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PATIAL interpolation with mapping is crucial for estimating the soil carbon pool under changing 

land use pattern. Different land uses have effect differentially on carbon pool in in different 

ecosystems. The soil organic carbon (SOC) was predicted by using Inverse distance weighting (IDW) 

and ordinary kriging (OK). For this Circular 200 plot samples were taken (0.1 ha or 17.84 m radius). 

Study area was stratified on the basis of Land use i.e Forests, Range Lands, Barren Lands, sand dunes 

and water bodies. Landsat 8,9 images were downloaded from USGS Earth Explorer website. The pre-

processing of the Landsat images for making maps of biomass was done in ENVI 5.3/SNAP 3.0. The 

processed images were analyzed and vegetation indices were computed. Statistical relationship was 

established with computed indices and departmental data. Total carbon of LSNP was calculated 21.51 

m3/m2 while the total carbon stock from Cholistan wildlife sanctuary was 39.9gm/m2. Spatial 

distribution of biomass of LSNP indicated, the biomass is influenced by tree age, as young trees tend 

to have lower biomass, whereas old trees have higher biomass due to their age-related growth 

patterns. The spatial distribution of the IDW interpolation appears to align with the SLR model. MLR 

model illustrates elevated SOC levels (1.0 to 1.20) in the southern regions, whereas a decline in SOC 

content (0.56 to 0.77) was noticeable in the northern parts of the study area. However, SOC levels 

near water bodies exhibited higher values, likely attributable to the presence of sparse vegetation. 

Conclusively this study provides basic information for establishment of carbon sink centers to combat 

adverse impacts of global warming, and climate change. 

Keyword: LSNP, SOC, Vegetation indices, OK, Land use pattern. 

1. Introduction  

The world's largest organic carbon store is thought to be found in soil. It makes up around 75% of the terrestrial 

ecosystem's TC (Total Carbon) pool. Where flora and atmosphere and soil reserve 620 pg and 780 pg and soil 

stores 1500–1600 pg C respectively (Jobbagy and Jackson, 2000; Chung et al., 2008; Greve et al., 2009; Luo et 

al., 2010; Elbasiouny et al., 2014). One of the key elements of soil health and quality is SOC (Gregorich et al., 

1994) that is crucial agricultural production (Stevenson and Cole, 1999). Soil structure, ability to store water, and 

cation-exchange capabilities are important factors that affect soil fertility. Additionally, it is crucial to the 

humification process of soil organic matter (SOM) (USDA-NRCS, 1995). Evaluating SOC stock using point 

location data is challenging. We can measure the location points of SOC which can be used to estimate the SOC 

stock by using spatial interpolation techniques and taking into account numerous factors impacting SOC (Gogoi 

et al., 2024). 

Human activity drives the broad, important processes of land use/cover dynamics, which also result in changes 

that ultimately affect the human life. Anthropogenic activities have been the cause of the decline in forest cover 

over the past few decades, which caused a global environmental problem. Four processes need to be taken into 

account when identifying natural resources, identifying changes that have happened, categorizing environmental 

changes, and figuring out the degree and patterns of change. In the past few decades, there have also been 

significant changes in land cover and use, such as the clearance of forest regions to make way for infrastructure, 

agricultural, engineering projects, and barren places. Land use land cover (LULC) mapping is important for the 

fulfillment of the objectives regarding management of the land, ecological research and to make available the 

proper information on suitable planning and management of natural resources (Sahu and Ghosh, 2021; Gogoi et 

al., 2024).  

The SOC spatial variability is an important method for the measurement of the soil quality and carbon pools in 

terrestrial ecosystem and also essential for the forecasting of environment, ecological modeling, agriculture and 

also for Natural resource management (Zhang et al., 2012; Liu et al., 2014; Wei et al., 2008). The characteristics 
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of the SOC geographic distribution will be made available to the public, assisting in the establishment of the 

framework for evaluating soil fertility and supporting the development of reasonable agricultural environmental 

management plans. Scientific management is essential for SOC nutrients to grow in agricultural systems in a 

sustainable manner. As a result, adequate information about the spatiotemporal behavior of SOC over a region is 

needed. On the other hand, SOC measurements are expensive and time-consuming by nature, particularly if a 

soil sample is needed for installation (Kingsley et al., 2021). 

Many statistical and geostatistical methods have been used in the past to determine the spatial distribution of 

SOC (Kumar et al., 2012, 2013; Kingsley et al., 2021). Using classical statistics, it was unable to determine the 

geographical distribution of soil characteristics at the un-sampled regions. Geo-statistics is a useful tool for 

examining the spatial distribution of soil qualities and their variability, as well as for reducing execution costs 

and assessment error variance (Saito et al., 2005; Liu et al., 2014; Behera and Shukla, 2015; Kingsley et al., 

2021).  

Geospatial approaches were also used for the evaluation of soil spatial relationships and also for the amount by 

which properties of soil can fluctuate (Wei et al., 2008; Zhu et al., 2022). For the prediction of spatial 

distribution of the properties of soil, the ordinary kriging (OK) proved much valuable than inverse distance 

weighting (IDW) method (Zare-mehrjardi et al., 2010; Raheem et al., 2023). Robinson and Metternicht, (2006) 

described three divergent methodologies were used for the prediction of SOC. These methodologies included 

ordinary kriging and inverse distance weighting. The kriging method which is mostly used in recent researches is 

OK (ordinary kriging) through which estimates of surface maps of soil properties can be produce (Pang et al., 

2011).  For the spatial prediction of TSD (total dissolved solids) in water used for drinking, the most operational 

technique is EBK (Empirical Bayes kriging) (Hussain et al., 2014; Patel et al., 2024) and this technique also 

performed better as compare to other geo-statistical methods i.e ordinary kriging (OK) and inverse distance 

weighting (IDW) for the assessment of contamination in ground water (Mirzaei and Sakizadeh, 2015; Zhu et al., 

2022).  

Despite these advancements, there remains a noticeable research gap in spatial SOC modeling within arid and 

semi-arid ecosystems like the Cholistan Desert-especially under varied land use patterns such as forests, 

rangelands, barren lands, and sand dunes. Few studies have comprehensively evaluated the comparative 

efficiency of interpolation methods like OK and IDW in such harsh, ecologically sensitive environments 

(Robinson and Metternicht, 2006; Zare-mehrjardi et al., 2010; Patel et al., 2024). Furthermore, the integration of 

remote sensing-derived vegetation indices with ground-based carbon estimates is underexplored in these regions. 

To address this gap, this study investigates the spatial distribution of SOC using geospatial interpolation methods 

in Lal Suhanra National Park (LSNP) and Cholistan Wildlife Sanctuary (CWLS), integrating remote sensing 

data, vegetation indices, and field sampling. The objective is to determine the most suitable interpolation 

technique for SOC prediction in the study area and provide foundational data for the development of carbon sink 

centers for land managers and policy makers to mitigate the impacts of climate change. 

2. Materials and Methods 

2.1.  Study Area  

This research was carried out in the Protected Areas (Lal Suhanra National park and Cholistan Wildlife 

Sanctuary) of Bahawalpur District.  

Lal Suhanra National Park: Lal Suhanra National Park (LSNP) having an area of 162567 acres (Survey 

Punjab Wildlife and Parks Department 2022) is located between 29° 12' and 29° 28′ northern latitude and 71° 48′ 

and 72° 08′ eastern longitudes, with an altitude from 125 to 140m. The area is highly diversified by flora and 

fauna, three different microhabitats and cultural heritage, to conserve these resources the area was notified as 

national park in 1972. LSNP is of monstrous worth because of irrigated plantation, enclosures of wildlife, 

recreation facilities as well as fishing in the lake. The changing soil physio-chemical characteristics, the area 

assumes a significant part in conserving biodiversity of the area. Vegetation is generally sparse whereas desert 

region upholds the xeric and semi-xeric sort of vegetation. The Lake has the hydrophytes and mesophytes 

(Wariss et al., 2014). 

Cholistan Wildlife Sanctuary: The Cholistan desert is a section of the world's seventh biggest desert, the Great 

Desert, which is extended along the south line of Punjab area, Pakistan. The area of the Cholistan desert is 

660,921 ha; it is situated 29º 59' North as well as 73º 16' East at an altitude of around 112m (Abid et al., 2024). 

Geography, soil type and surface, along with plantation structure separate this desert into two specific areas: the 

northern locale (Lesser Cholistan) covers around 7,770 km
2
 as well as the southern area (Greater Cholistan) 

around 18,130 km
2
 (Guidelines for sensitive and critical areas, Govt. of Pakistan, Oct 1997). 
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Soil and Climate: Due to insignificant amount of organic matter, the soil of Cholistan desert is considered as 

poor. The Lesser Cholistan is described by huge saline compacted with alluvial soil (inter-dunal flats), which are 

generally stabilized to semi-stabilized. Soil of interdunal sites differs in surface, structure, and the degree of 

salinity and sodicity with pH ranges from 8.2 to 9.6. Sand dunes are much lower (under 100 meters) than those 

found in Greater part. The Greater Cholistan is involved by hot desiccated winds that lead to sand dune shifting 

even a huge sand dune can be converted into Interdunal surface. Cholistan desert is severe dry and long summer 

droughts which may extend for 4-6 years consistently. Mean summer temperature varies from 35-50 ºC during 

May to June as well as winter from 12-15 ºC December to February. Annual precipitation is low and 

inconsistent, annual rainfall ranging from 100-200mm/year mm with its maximum during July to September 

during monsoons and January to March during winters (Hameed et al., 2011; Abid et al., 2024). 

2.2. Data collection and analysis 

Stratification of the area 

Study area was stratified on the basis of Land use classes in both sites i.e Forests, Range Lands, Barren Lands, 

sand dunes and water bodies, for Lal Sohanra national park (Forest types i.e Thorn forests/Irrigated forests). Data 

collection from Cholistan wildlife sanctuary was also based on geographic distribution Range lands, Barren 

lands, water bodies, sand dunes and irrigated lands.  

Field Sampling and Estimation of Carbon Stocks 

Circular plots of 0.1 ha (17.84 m radius) were randomly established in stratified land cover classes. Tree species 

data (DBH and height) were recorded, and above-ground biomass (AGB) was calculated using species-specific 

allometric models and biomass expansion factors (BEF). AGB was converted to carbon using the IPCC-

recommended coefficient of 0.47. Below-ground biomass (BGB) was estimated using a root-to-shoot ratio (R/S 

= 0.26). 

Soil samples were taken at depths of 0–15 cm and 15–30 cm from each plot, and SOC was measured via 

laboratory analysis. Bulk density was calculated from dried soil cores. 

Above Ground Biomass (AGB) for tree species 

The data were collected from both sites by using random sampling. Tree height was measured by using wooden 

protector, Diameter was taken at diameter at breast height (DBH 4.5 feet) and converted into volume. 

(Ekoungoulou et al., 2015). 

Data analysis in three (03) pools:  

Above Ground Biomass (AGB)  

Above ground biomass was calculated from the stem biomass and biomass expansion factor. Stem biomass was 

calculated from the volume (m
3
) and wood density of the tree species. (Ahmad et al., 2014), Table 1a. 

Stem biomass= Volume × Wood density 

For the calculation of total above ground biomass, Biomass Expansion Factor (BEF) was used which was 

established for each species.  

𝐴𝐺𝐵 = 𝑉 ×𝑊𝐷 × 𝐵𝐸𝐹 

Whereas:  

AGB= Above Ground Biomass  

V= Volume  

WD= Wood Density   

BEF= Biomass Expansion Factor  

BEF= Total AGB
w
/BM

b
  

Whereas, 

AGB
w
= Above ground biomass of a whole tree (limbs, branches, twigs & leaves) 

BM
b
= Biomass of a tree bole till merchantable height (Ali et al., 2020) 
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Table 1a. Showing the Expansion factor of different species for the estimation of total Above Ground 

Biomass. 

Sr. no. Species name 
Biomass Expansion factor 

(BEF= AGB
w
/BM

b
 ) 

1 Vachillia nilotica 1.2 

2 Tamarix aphylla 1.2 

3 Prosopis cineraria 1.4 

4 P. glandulus 1.7 

5 P. juliflora 1.4 

6 Salvadora oleoides 1.2 

7 S. persica 1.3 

8 Ziziphus jujuba 1.5 

9 Z. mauritiana 1.12 

10 Z. spine cristi 1.5 

11 Z. nummularia 1.5 

 

The estimation of total carbon from biomass was done by multiplying the obtained above ground biomass with 

conversion factor which determine the average carbon in biomass. So, the co-efficient of 0.47 was used for the 

conversion of biomass to carbon.  

Total carbon= 0.47 x Biomass  

The co-efficient is widely used internationally; therefore, it has been applied in current research for the 

estimation of total carbon in above ground biomass (Vicharnakorn et al., 2014).  

Pool 2: Below Ground Biomass (BGB) 

To calculate below ground biomass of BGB= AGB x R/S  

Whereas:  

BGB= Below Ground Biomass  

AGB= Above Ground Biomass  

R/S Ratio= Root-Shoot Ratio (0.26) (Kumar et al., 2022; IPCC, 2003; Grass Biomass Production, 2023). 

Pool 3: Soil Carbon  

Soil samples were collected at 0-15 and 15-30cm soil depth from each plot by using an Augar (Nizami et al., 

2009). Soil samples of top soil were also collected from each plot.  Fresh weight of each sample was measured 

by using weighing machine. Samples were air dried in the laboratory and weight was measured again by using 

electrical balance. Soil carbon, above and below ground soil carbon was measured by using the following 

methodology. 

𝑆𝑂𝐶 = 𝐵𝐷 × 𝐷 ×%𝐶 

Whereas:  

SOC = Soil Organic Carbon Stock  

BD= Soil Bulk Density  

D= the total depth at which the sample was taken.  

% C = Carbon concentration (%) amounting to 0.47 of biomass or taken from lab measurements  

Bulk density of the soil = Dry weight of the soil/Volume of the core (Ali et al., 2020; Magar et al., 2020) 

2.3.  Integration of Field Sampling with Remote Sensing Data  

To ensure robust spatial estimation of biomass and soil organic carbon (SOC), remote sensing data were 

integrated with ground-based field sampling. This process involved image pre-processing, spectral index 

computation, and statistical validation against field data. 

Landsat 8 and 9 Level-1 data were downloaded from the USGS Earth Explorer portal for the time period 

corresponding as closely as possible to field data collection. Preprocessing was conducted using ENVI 5.3 and 

SNAP 3.0, and included the following steps: 
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 Radiometric Calibration: Conversion of digital numbers (DN) to Top-of-Atmosphere (TOA) reflectance. 

 Atmospheric Correction: Performed using the FLAASH module to reduce atmospheric interference. 

 Georeferencing and Reprojection: All scenes were corrected to WGS 84, UTM Zone 42N. 

 Cloud and Shadow Masking: Implemented using the Fmask algorithm to exclude cloud-covered pixels. 

 Image Subsetting: Study areas (LSNP and CWLS) were extracted using vector shapefiles for region-of-

interest (ROI) analysis. 

The processed images was then analyzed and computation of vegetation indices was done to find forest density 

and biomass. Indices were computed using raster calculator tools in ENVI and exported as georeferenced layers 

for spatial analysis. After image processing, statistical relationship was established with computed indices and 

departmental data. The forest attributes (vegetation indices and biomass) was analyzed against explanatory 

variables.   

2.4.  Model Calibration and Validation 

Field-estimated biomass and SOC values were statistically correlated with the spectral indices using: 

 Simple and multiple linear regression (SLR and MLR). 

 Stepwise regression to identify the most significant predictors. 

 Models were evaluated using coefficient of determination (R²), root mean square error (RMSE), and standard 

error of the estimate (SEE). 

To ensure accuracy and generalizability 70% of field data were used for model calibration and 30% for 

independent validation. Performance was assessed by comparing predicted vs. observed values using validation 

metrics (R², RMSE, MAE). Residual plots and scatterplots were used to visualize model fit. 

2.5. Spatial Mapping 

The best-performing regression models were applied to the full spectral index Rasters using ArcGIS 10.3 to 

generate biomass and SOC spatial distribution maps. For interpolation of soil carbon, both Inverse Distance 

Weighting (IDW) and Ordinary Kriging (OK) were used, and their performance compared. 

1. Landsat-8, 9 product acquisition from https://earthexplorer.usgs.gov/, for nearest possible time when forest 

inventory was done. 

2. Landsat-8 product acquisition from https://earthexplorer.usgs.gov/, for the current forest inventory time.  

3. Image classification of both images for land use changed detection (Margono et al., 2012). 

2.6. Interpolation methods 

The present study used both geostatistical i.e., using the statistical qualities of the measured points and 

deterministic i.e., creating surfaces from measured point’s interpolation approaches. The spatial distribution of 

SOC was generated in this study using a range of deterministic interpolation techniques, such as those based on 

the degree of smoothing (radial basis functions), the extent of similarity (inverse distance weighted), local 

polynomial interpolation (LPI), or geostatistical interpolation, namely ordinary kriging (OK) and Empirical 

Bayes (EBK) (Johnston et al., 2001). Only inverse distance weighting and ordinary kriging method was used for 

mapping.  

2.7.   Inverse Distance Weighting (IDW) 

In the field of soil research, one of the most widely used deterministic interpolation methods is the IDW. IDW 

calculations were based on recognized places that were close by. The inverse of the distance from the 

interpolation point determines the weights applied to the interpolating points. As a result, the close points are 

weighted more than the distant points, and vice versa, meaning that they have greater impact. It is implicit that 

the known sample points are independent of one another (Robinson and Metternicht, 2006). 

Z(X0) = Σ
n

i=1xi/h
ꞵ

ij/ Σ
n
i=11/h

ꞵ
ij 

Where ß indicates the weighting power, xi is the ith data value, ij is the separation distance between the 

interpolated value and the sample data value, and z(x0) is the interpolated value. The total number of sample 

data values is represented by n. 

2.8. Ordinary kriging (OK) 

The statistical characteristics of the observed data (spatial autocorrelation) are incorporated into the ordinary 

kriging approach. By using the semi-variogram, the kriging approach expresses the spatial continuity 

https://earthexplorer.usgs.gov/
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(autocorrelation). The statistical correlation's strength as a function of distance is determined by the semi-

variogram. The sill corresponds to the maximal variability in the absence of geographical dependence, and the 

range is the distance at which the spatial connection disappears. The goodness of fit was assessed using the 

coefficient of determination (R2) (Robertson, 2008). 

Kriging estimate z*(x0) and error estimation variance σk
2
(x0) at any point x0 were, respectively, calculated as 

follows: 

Z*(X0) = Σ
n
i=1 λiz(xi) 

σ
2
k(X0) = µ+ Σ

n
i=1 λiγ(x0-xi) 

Where λi are the weights; µ is the lagrange constant; and γ (x0 _ xi) is the semi-variogram value corresponding 

to the distance between x0 and xi (Vauclin et al., 1983; Agrawal et al., 1995). 

2.9. Statistical Analyses 

A spectral index includes normalized difference vegetation Index (Rouse et al., 1973), Soil Adjusted Vegetation 

Index (SAVI) (Qi et al., 1994), Difference Vegetation Index (DVI) (Jordan, 1969), Modified Soil Adjusted 

Vegetation Index (MSAVI) (Qi et al., 1994), Perpendicular Vegetation Index (PVI) (Perry and Lutenschlager, 

1984), Brightness index (BI) (Mondal et al., 2017), Redness index (RI), Colour index (CI), Vegetation (Veg) 

Second brightness index (BI2) (Gholizadeh et al., 2018), Shortwave infrared (SWIR), Second shortwave infrared 

(SWIR2) (Nield et al., 2007), Normalized Difference Spectral Indices (NDSI) (Boschetti et al., 2014). 

Regression model for the mapping of biomass spatial distribution in carbon stock will be developed all over the 

research area. OK (ordinary kriging) and IDW (Inverse distance weighting) was used for interpolation (Addis et 

al., 2016).  

3. Results  

3.1.  Soil organic carbon of LSNP and CWLS 

Table 1b shows the significant results above ground biomass of different tree species in Cholistan wildlife 

sanctuary m
3
/m

2 
during two years of research (2021-2022). Total volume of Vachellia nilotica during 2021 was 

3.28675 m
3 

and during 2022 was 0.97541 m
3
, for Tamarix aphylla during 2021 was 9.81100 m

3 
and during 2022 

was 5.79375 m
3
. Soil organic carbon are shown in table 1b. 

Table 1b. Year wise mean values of volume, Above ground biomass (AGB), Below ground biomass (BGB), 

Total biomass (TB) and Total carbon of selected tree species in Cholistan wildlife sanctuary. 

Species Years 
Tree volume 

(m3) 

AGB 

M3/m2 

BGB 

M3/m2 

TB 

M3/m2 

TOTAL CARBON 

M3/m2 

Vachellia nilotica 
2021 3.28675 0.006705 0.001743 0.00844 0.003971 

2022 0.97541 0.001756 0.000456 0.00221 0.001039 

Tamarix aphylla 
2021 9.81100 0.012951 0.003367 0.01631 0.007669 

2022 5.79375 0.006257 0.001626 0.00788 0.003705 

Prosopis cineraria 
2021 1.02972 0.001009 0.000262 0.00127 0.000598 

2022 0.44640 0.000312 0.000038 0.00035 0.000164 

P. glandulus 
2021 0.16945 0.000432 0.000112 0.00054 0.000256 

2022 0.17711 0.000331 0.000060 0.00039 0.000184 

P. juliflora 
2021 0.62876 0.002201 0.000572 0.00277 0.001303 

2022 0.22715 0.000636 0.000165 0.00080 0.000376 

Salvadora oleoides 
2021 5.47202 0.00591 0.001536 0.00744 0.0035 

2022 5.43358 0.003912 0.001017 0.00493 0.002316 

S. persica 
2021 3.48357 0.001359 0.000353 0.00171 0.000805 

2022 0.19448 0.000075 0.000019 0.00010 0.000042 

Ziziphus jujube 
2021 0.27768 0.000458 0.000055 0.00051 0.000242 

2022 1.16419 0.001397 0.000363 0.00176 0.000827 

Z. mauritiana 
2021 17.3457 0.054396 0.014143 0.06853 0.032213 

2022 12.2024 0.030066 0.007817 0.03788 0.017805 

Z. spine cristi 
2021 3.96266 0.004161 0.001081 0.00524 0.002464 

2022 2.43291 0.002189 0.000569 0.00276 0.001296 

Z. nummularia 
2021 0.33023 0.000693 0.000180 0.00087 0.000411 

2022 0.24308 0.000401 0.000049 0.00045 0.000211 
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3.2. Biomass and carbon stock of desert and LSNP 

Figure 1 explains that biomass gm/m
2
 in desert (CWLS) is 175.83 and biomass m

3
/m

2
 in LSNP is 45.179. The 

carbon gm/m
2 
in desert is 87.91 and carbon m

3
/m

2 
in LSNP is 21.514.  

 

Fig. 1. Biomass and carbon stock of Cholistan wildlife sanctuary (CWLS) and Lal Suhanra national park 

(LSNP). 

Table 2 describes the total amount of carbon in different depths of CWLS and LSNP during the year 2021. 

The results indicate that total carbon in rangelands of CWLS was 0.274942 g/m
2
 in top soil, 0.330916 g/m

2
 in 

1-15cm and 0.323666 g/m
2
 in 15-30cm. Maximum carbon is present in irrigated lands of CWLS as shown in 

table 2. 

Table 3 describes the total amount of carbon in different depths of CWLS and LSNP during the year 2022. The 

results indicate that total carbon in rangelands of CWLS was 0.259571 g/m
2
 in top soil, 0.323956 g/m

2
.  

Table 2. Mean values and standard error of soil carbon g/m
2
 at different depths in CWLS and LSNP 2021. 

 

Stratifications 

CWLS (2021) LSNP (2021) 

Top soil 1-15cm 15-30cm Top soil 1-15cm 15-30cm 

Range lands 0.27±0.07 0.33±0.09 0.32±0.07 0.24±0.08 0.29±0.18 0.28±0.1 

Barren lands 0.22±0.14 0.155±0.1 0.14±0.1 0.21±0.09 0.24±0.11 0.23±0.11 

Sand dunes 0.32±0.059 0.37±0.078 0.33±0.07 0.20±0.13 0.21±0.12 0.22±0.11 

Water bodies 0.268±0.16 0.19±0.08 0.22±0.19 0.25±0.09 0.21±0.09 0.28±0.07 

Forest (LSNP), Irrigated 

lands (CWLS) 
0.33±0.1 0.35±0.1 0.37± 0.1 0.22±0.09 0.27±0.13 0.28±0.1 

 

Table 3. Mean values and standard error of soil carbon gm/m
2
 at different depths in CWLS and LSNP 

2022. 

 

Stratifications 

CWLS (2022) LSNP (2022) 

Top soil 1-15cm 15-30cm Top soil 1-15cm 15-30cm 

Range lands 0.26±0.07 0.32±0.07 0.32±0.07 0.23±0.07 0.27±0.06 0.31±0.06 

Barren lands 0.22±0.01 0.25±0.01 0.28±0.09 0.24±0.09 0.27±0.08 0.3±0.08 

Sand dunes 0.29±0.8 0.31±0.07 0.33±0.07 0.19±0.01 0.21±0.01 0.23±0.08 

Water bodies 0.25±0.17 0.28±0.12 0.27±0.12 0.26±0.05 0.29±0.05 0.32±0.05 

Forest, (LSNP), Irrigated 

lands (CWLS) 
0.33±0.07 0.36±0.06 0.39±0.05 0.54±0.24 0.27±0.11 0.31±0.08 

175.83 

87.91 

45.179 
21.514 
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3.3. Vegetation Indices from Landsat-9 Image 

Various vegetation indices were computed from Landsat-9 imagery, encompassing the Normalized Difference 

Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modified SAVI, Difference Vegetation 

Index (DVI), and Perpendicular Vegetation Index (PVI) as depicted in Figure 2. The NDVI values ranged from 0 

to 0.42, where positive values (0.42 or less) indicated the presence of vegetation cover, while values of 0 or less 

suggested the absence or sparse vegetation. Similarly, Figure 2 (B) and (C) illustrated that SAVI and MSAVI 

values varied from 0 to 0.63 and 0.45 to 1.09, respectively. Higher values in these indices were indicative of 

dense vegetation, while lower values denoted areas with little to no vegetation. Additionally, elevated values in 

DVI and PVI corresponded to tropical thorn forests, while lower values were associated with rangelands and 

barren lands. Overall, the analysis of all vegetation indices revealed that forest density was scattered throughout 

the LSNP. Particularly, higher forest density was observed in the central regions of the study area, gradually 

decreasing from south to north. In contrast, the extreme eastern and western parts of the study area exhibited 

sparse vegetation, mostly comprising rangelands as shown in figure 2.  

 

 

 

 

 

Fig. 2. Various vegetation indices were computed from Landsat-9 imagery, encompassing the Normalized 

Difference Vegetation Index (NDVI) (A), Soil Adjusted Vegetation Index (SAVI) (B), Modified 

SAVI (C), Difference Vegetation Index (DVI) (D), and Perpendicular Vegetation Index (PVI) (E). 
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3.4. Correlation between Biomass versus Landsat-8 Spectral Indices 

The spectral indices included NDVI, SAVI, MSAVI, DVI, and PVI, while the other variables encompassed 

elevation, slope, aspect, mean annual temperature, and annual precipitation. Results indicated that all vegetation 

indices (NDVI, SAVI, MSAVI, DVI, and PVI) demonstrated a strong positive correlation with biomass (t/ha). 

Conversely, biomass displayed negative correlations with slope, aspect, mean annual temperature (MAT), and 

annual precipitation (APPT). Notably, the spectral indices DVI and PVI exhibited the highest correlation with 

biomass, achieving an R
2
 value of 0.82. Following closely were NDVI and SAVI, showing an R

2
 value of 0.80. 

MSAVI, on the other hand, demonstrated the lowest correlation among the spectral indices, with an R
2
 value of 

0.77. Regarding the other variables, such as elevation, aspect, slope, MAT, and APPT, their coefficient of 

correlation was deemed insignificant at the 0.05 and 0.01 significance levels (Figure 3). 

 

 
 

Fig. 3. A correlation matrix was created to examine the relationships between biomass (measured in t/ha) 

and various spectral indices derived from a Landsat-8 image, as well as topographic and climatic 

factors for variables (elevation, aspect, slope, MAT, and APPT). 

 

 

3.5.  Single Predictor Linear Regression between Biomass and Landsat-9 Spectral Indices 

The results of single predictor linear regression models between biomass (t/ha) and spectral indices have been 

summarized in Table 4, while the corresponding scatterplots are displayed in Figure 4. The linear regression 

model using NDVI as a predictor showed a coefficient of correlation of 0.64. This means that approximately 

64% of the field data was explained by the NDVI-based model, leaving around 36% of the data unexplained. 

Considering that NDVI is a proxy data, a correlation coefficient of this magnitude is considered good. Similar to 

NDVI, the regression model based on SAVI also exhibited a similar R
2
 value, indicating that approximately the 

same proportion of variance (64%) in biomass data was explained by this index, leaving the remaining 36% 

unexplained. However, the coefficient of correlation for the MSAVI model (R
2
 0.60) was lower than that of 

NDVI and SAVI, suggesting that this model explained around 60% of the biomass data, leaving 40% 

unexplained. In contrast, both DVI and PVI showed higher coefficient of correlation (R
2
 0.67) compared to all 

other indices, indicating that they explained approximately 67% of the field biomass data, with about 33% 

remaining unexplained. 
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Fig. 4. Scatterplots of linear regression models b/w biomass and spectral indices Stepwise Linear 

Regression Model (SLRM).   

 

Table 4. Single predictor linear regression models between biomass (t/ha) and spectral indices. Summary 

of regression models for Landsat-9 Spectral indices. 

Indices Equation R
2
 SE F P-value 

NDVI Biomass=  697.61*NDVI - 110.33 0.64 30.50 172.7 3.47E-23 

SAVI Biomass= 465.08*SAVI - 110.33 0.64 30.40 171.8 3.37E-23 

MSAVI Biomass= 494.3*MSAVI - 380.67 0.60 32.12 146.2 5.21E-21 

DVI Biomass = 0.0237*DVI - 105.56 0.67 29.12 198.72 4.07E-25 

PVI Biomass = 0.0336*PVI - 105.56 0.64 29.12 198.72 4.07E-25 

 

3.6. Stepwise Linear Regression Model (SLRM)  

The findings from the stepwise linear regression have been presented in Table 5. All spectral indices derived 

from Landsat-9 (NDVI, MSAVI, SAVI, DVI, PVI) were utilized as explanatory variables in the stepwise 

method. The final model selected the explanatory variables based on their significance levels, with a probability 

of being selected set to <= .050 and a probability for exclusion set to >= .100. As depicted in Table 3, the 

ultimate model indicated that MSAVI and SAVI were chosen as explanatory variables for biomass mapping in 

the study area. In contrast, the remaining indices (NDVI, DVI, and PVI) were not excluded from the model 

because their significance values exceeded the pre-defined threshold. The overall coefficient of determination for 

the model was 0.81, and the Adjusted R-squared was 0.812, with an error estimate of 22.01 (t/ha) for biomass.  
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Table 5. Stepwise Linear Regression Model and Biomass Mapping; a. Dependent variable: Biomass (t/ha); 

a. Predictors in the model: (Constant), MSAVI and SAVI; Stepwise (Criteria: Probability-of-F-

to-enter <= .050, Probability-of-F-to-remove >= .100). 

Variables entered/ removed Model summary 

Variables 

Entered 

Variables 

Removed 
Significance R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

MSAVI  .000 0.90 0.81 0.81 22.01 

SAVI  .000 ANOVA 

 NDVI .338  
Sum of 

Squares 
df Mean Square 

 PVI .915 Regression 204044.5 2 102022.280 

 DVI .915 Residual 46044.5 95 484.679 

   Total 250089.0 97  

Model Coefficients  

 Unstandardized coefficients 
Standardized 

coefficients 
T Sig. 

Model equation 

 

Biomass = 2501.5 – 

4692.8*MSAVI + 

4737.4*SAVI 

 B Std. Error Beta   

(Constant) 2501.5 276.527  9.046 .000 

MSAVI -4692.8 496.625 -7.377 -9.449 .000 

SAVI 4737.4 452.851 8.167 10.461 .000 

 

3.7. Spatial Distribution of Biomass in LSNP 

The most optimal linear regression model was selected for spatial mapping based on its performance, primarily 

determined by the R
2
 values. The resultant output, a spatial distribution biomass map, is presented in Figure 5. 

The predicted biomass from Landsat-9 data ranged from a minimum of 0 t/ha to 238 t/ha across the study area, 

as depicted in Figure 5. Analyzing the results, it becomes evident that the forest density is more pronounced in 

the central parts of the area, where tropical thorn forests extend from the southern to the northern regions. 

Conversely, the western and eastern sides exhibit lower vegetation or even barren and rangeland areas. Overall, 

the biomass of broadleaved species was observed to be lower, mainly due to reduced forest density and 

anthropogenic pressures. Furthermore, the biomass is influenced by tree age, as young trees tend to have lower 

biomass, whereas old trees have higher biomass due to their age-related growth patterns.   

 

Fig. 5. Spatial Distribution of Biomass in LSNP; The most optimal linear regression model determined by 

the R
2
 values . 
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3.8. Soil organic carbon of LSNP 

Correlation between SOC and Landsat-9 Spectral Indices 

The correlation results revealed that among all locations, SWIR/NIR exhibited the strongest correlation (R
2
= 

0.62) with Soil Organic Carbon (SOC), followed by BSI, SWIR2, and Veg, with correlations of 0.141, 0.137, 

and -0.136 respectively. Weaker correlations were observed between SOC and other indices (NDVI, SAVI, RI, 

CI, BI, BI2, SI, SOCI and NDSI). The relationship between SWIR and SOC proved to be highly significant at 

the 0.001 level, whereas the correlations of all other indices did not show significance. This analysis provided 

valuable insights that SWIR/NIR significantly influences the prediction of SOC using Landsat-8 data (table 6). 

Stepwise Linear Regression Model between SOC and Spectral Indices 

SLR model was developed to investigate the relationship between SOC and various explanatory variables, 

encompassing Landsat-9 spectral indices such as SWIR, Veg, RI, NDVI, SAVI, BI, RI, BI2, CI, SOCI, SI, BSI, 

and SWIR2. The SLR model adopted a stepwise approach for variable inclusion, considering significance values 

less than or equal to 0.50 as entry criteria, and removal probabilities equal to or exceeding 0.10, as displayed in 

Table 7. The outcomes of the SLR model demonstrated that out of the 13 explanatory variables, only three 

variables (SWIR, Veg, and RI) exhibited a significant relationship with SOC. Conversely, the remaining spectral 

indices were deemed insignificant and consequently excluded from the final model due to their p-values 

surpassing 0.10. The overall correlation of the SLR model was substantial, yielding an R
2
 value of 0.45, which 

accounted for 45% of the variation in the SOC data, while 55% of the data remained unexplained. The adjusted 

R
2
 stood at 0.43, accompanied by a standard error of 0.23. Furthermore, the model displayed proficient 

predictive capabilities, and the scatterplot depicting standardized predicted values against residuals. SLR model 

has three iterations and the coefficient of correlation has been increased from 0.387 (with 0.249 STD error) in 

the first model to the 0.452 (with 0.238 STD error) in the final model. 

 

Table 6. Correlation between SOC and Landsat-9 Spectral Indices; **Correlation is significant at the 0.01 

level (2-tailed). 

 SOC SAVI NDVI NDSI SOCI Veg BSI SWIR 

SOC 1 -.124 -.124 .007 .046 -.136 .141 .622
**

 

SAVI -.124 1 1.000
**

 -.874
**

 -.919
**

 .998
**

 -.994
**

 .059 

NDVI -.124 1.00
**

 1 -.874
**

 -.919
**

 .998
**

 -.994
**

 .059 

NDSI .007 -.874
**

 -.874
**

 1 .982
**

 -.849
**

 .876
**

 -.085 

SOCI .046 -.919
**

 -.919
**

 .982
**

 1 -.901
**

 .921
**

 -.069 

Veg -.136 .998
**

 .998
**

 -.849
**

 -.901
**

 1 -.991
**

 .055 

BSI .141 -.994
**

 -.994
**

 .876
**

 .921
**

 -.991
**

 1 -.023 

SWIR .622
**

 .059 .059 -.085 -.069 .055 -.023 1 
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Table 7. Landsat-9 spectral indices such as SWIR, Veg, RI, NDVI, SAVI, BI, RI, BI2, CI, SOCI, SI, BSI, 

and SWIR2. 

Stepwise Linear Regression for LSNP SOC 2022 

Variables entered/ removed Model summary 

Entered Removed Sig R R2 Adjusted R2 Std. Error 

SWIR  .000 .673c .452 .435 .238190 

Veg  .001 ANOVA  

RI  .014  
Sum of 

Squares 
df Mean Square F 

 SAVI .935 Regression 4.499 3 1.500 26.431 

 NDVI .935 Residual 5.447 96 .057  

 CI .474 Total 9.945 99   

 BI2 .813 Model Coefficients 

 BI .973  Unstandardized coefficients 
Standardized 

coefficients 
T 

 NDSI .769  B Beta   

 SI .535 (Constant) -.896 .395  -2.268 

 SOCI .089 SWIR 1.187 .144 .625 8.260 

 SWIR2 .951 Veg -.500 .148 -.392 -3.375 

 BSI .886 RI 14459.258 5747.295 .292 2.516 

Model equation; SOC = -0.896+1.187*SWIR-0.500*Veg+14459.2*RI 

Dependent variable: SOC 

Predictors in the model: (Constant), SWIR, Veg, RI 

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100). 

 

 

3.9. Spatial Mapping of SOC using SLR Model 

The final model of the SLR model was utilized to create a spatial distribution of SOC across the study area using 

ArcGIS 10.3. The resultant SOC spatial map is presented in Figure 6, illustrating distinct patterns, which 

depicted elevated SOC levels in the southern regions, encompassing rangelands and barren lands, whereas a 

decline in SOC content was evident in the central parts of the study area. This reduction aligns with areas 

occupied by forests, plantations, and water bodies. 

 

Fig. 6. SOC Prediction SLR Model; Final model of the SLR model was utilized to create a spatial 

distribution of SOC across the study area using ArcGIS 10.3. 
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3.10.  SOC Interpolation by Inverse Distance Weightage Method 

The Inverse Distance Weightage (IDW) technique was employed to generate a spatial interpolation of Soil 

Organic Carbon (SOC) across the study area, resulting in the map displayed in Figure 7. The findings indicated 

that the projected SOC values ranged from 0.14 to 1.04, with an average of 0.85. The standard deviation was 

0.19, and the skewness coefficient was 0.49. Additionally, the kurtosis coefficient was calculated as 0.83 for the 

predicted SOC values. Analyzing the data distribution revealed a consistent pattern between observed and 

estimated SOC, with a standard error of 0.019. The spatial distribution of the IDW interpolation appears to align 

with the SLR model, particularly in the central section of the study area where forests, plantations and water 

bodies are situated. 

 

 

 

Fig. 7. IDW Interpolation SOC Prediction; The Inverse Distance Weightage (IDW) technique was 

employed to generate a spatial interpolation of Soil Organic Carbon (SOC) across the study area, 

resulting in the map. 

 

3.11.  Soil organic carbon of desert area  

The results of correlation exhibited that among all locations, SAVI and NDVI showed the strongest correlation 

(R
2
= 0.69) with SOC, followed by Veg SWIR and SWIR2 with correlations of 0.68, 0.61, and 0.56 respectively. 

Weaker correlations were observed between soil organic carbon and other indices (BSI, RI, CI, BI, BI2, SI, 

SOCI and NDSI). The relationship between BSI and SOC proved to be highly significant at the 0.01 level, while 

the correlations of all other indices did not show significance. This analysis provided valuable insights that SAVI 

and NDVI significantly influences the prediction of SOC using Landsat-9 data (table 8). 

Multiple Linear Regression of Desert SOC and Spectral Indices  

MLR model was developed using desert field-measured Soil Organic Carbon (SOC) as the dependent variable 

and various explanatory variables, including Landsat-9 spectral indices such as BI, RI, SAVI, SWIR2 BI2, CI, 

SOCI, SI, BSI, SWIR, Veg, RI, and NDVI. The MLR model followed an iterative approach for variable 

selection, where significance values equal to or less than 0.50 served as entry criteria, and removal probabilities 

exceeding or equal to 0.10 were considered, as detailed in Table 9. The output of the MLR model revealed that 

08 explanatory variables, including Veg, SI, BSI, CI, SWIR2, SOCI, SWIR, and RI, were selected and included 

due to their significant relationships with SOC. Conversely, the remaining predictor variables were removed due 

to their weak association with field SOC. The overall correlation of the MLR model resulted in an R
2
 value of 

0.30, explaining only 30% of the variation in the SOC data, leaving 70% of the SOC data unexplained. The 

adjusted R
2
 stood at 0.233, with a standard error of 0.25. The performance of spectral indices may be improved 

with high resolution satellite images and intensive field sampling. 
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Table 8. Correlations of soil organic carbon of desert area; correlation exhibited that among all locations, 

SAVI and NDVI showed the strongest correlation (R
2
= 0.69) with SOC. 

 SOC BSI SAVI NDVI NDSI SOCI SWIR SWIR2 Veg 

SOC 1 .493
**

 .069 .069 -.117 -.114 .061 .056 .068 

BSI .493
**

 1 .031 .031 -.285
**

 -.333
**

 .243
*
 .231

*
 .027 

SAVI .069 .031 1 1.000
**

 .148 .157 -.731
**

 -.774
**

 1.000
**

 

NDVI .069 .031 1.000
**

 1 .148 .157 -.731
**

 -.774
**

 1.000
**

 

NDSI -.117 -.285
**

 .148 .148 1 .964
**

 -.721
**

 -.643
**

 .138 

SOCI -.114 -.333
**

 .157 .157 .964
**

 1 -.730
**

 -.652
**

 .148 

SWIR .061 .243
*
 -.731

**
 -.731

**
 -.721

**
 -.730

**
 1 .993

**
 -.727

**
 

SWIR2 .056 .231
*
 -.774

**
 -.774

**
 -.643

**
 -.652

**
 .993

**
 1 -.771

**
 

Veg .068 .027 1.000
**

 1.000
**

 .138 .148 -.727
**

 -.771
**

 1 

 

Table 9. Multiple Linear Regression of Desert SOC and Spectral Indices; MLR model was developed 

using desert field-measured Soil Organic Carbon (SOC) as the dependent variable and various 

explanatory variables, including Landsat-9 spectral indices such as BI, RI, SAVI, SWIR2 BI2, 

CI, SOCI, SI, BSI, SWIR, Veg, RI, and NDVI.  

Multiple Linear Regression of Desert SOC 2022 

Variables entered/ removed ANOVA 

Entered Removed  Sum of Squares df Mean Square F 

Veg, SI, BSI, CI, 

SWIR2, SOCI, 

SWIR, RI 

SAVI, NDVI, 

BI2, NDSI, 

BI 

Regression 2.329 8 .291 4.459 

Model Summary Residual 5.419 83 .065  

R .548a Total 7.748 91   

R2 .301 Model Coefficients 

Adjusted R2 .233  Unstandardized coefficients 
Standardized 

coefficients 
T 

Std. Error .255  B Beta   

Model Equation: 

SOC = 43.35+ 14.421* BSI -

242427.04* RI+113.68* CI-

.291*SI+.001*SOCI+ 

14.33SWIR-1.763*Veg 

 

(Constant) 43.357 71.149  .609 

BSI 14.421 2.860 .517 5.043 

RI -242427.048 299856.653 -3.049 -.808 

CI 113.687 184.565 1.635 .616 

SI -.291 .464 -4.583 -.627 

Dependent variable: SOC 

Predictors: (Constant), Veg, SI, 

BSI, CI, SWIR2, SOCI, SWIR, 

RI 

SOCI .001 .002 1.438 .423 

SWIR 14.337 27.985 1.630 .512 

SWIR2 .000 .001 -1.732 -.651 

Veg -1.763 5.196 -.129 -.339 

 

3.12. Spatial Mapping of SOC using MLR Model 

Results showed that final iteration of the MLR model was employed to map the spatial distribution of SOC 

across the study area and the resultant output SOC spatial map is shown in Figure 8 and revealing distinct SOC 

patterns. MLR model illustrates elevated SOC levels (1.0 to 1.20) in the southern regions, including rangelands 

and barren lands, whereas a decline in SOC content (0.56 to 0.77) was noticeable in the northern parts of the 

study area. However, SOC range from 0.88 to 1.09 in the central parts of the study area. Compare to the results 

of IDW, the MLR model showed consistency in the northern and southern parts of the study area. Overall, model 

based on spectral indices computed from medium resolution (30 m) of Landsat-8 may be enhanced with high 

resolution satellite images specifically Synthetic Aperture Radar (SAR) data or fusion of high resolution optical 

and SAR data. Further, improved models of machine learning may also enhance SOC prediction particularly in 

desert areas.    
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Fig. 8. Final iteration of the MLR model was employed to map the spatial distribution of SOC across the 

study area and the resultant output SOC spatial map. 

SOC Interpolation by Inverse Distance Weightage Method 

SOC of the desert has been interpolated through Inverse Distance Weightage (IDW) method and its resultant 

output map depicted in Figure 9. The results showed that the estimated SOC values ranged from 0.29 to 1.44, 

with an average of 0.89 which is consistent with mean observed SOC of 0.90. The standard deviation was 0.17, 

and the skewness coefficient was 0.36. Furthermore, the kurtosis coefficient for the predicted SOC values was 

calculated to be 0.66. Comparatively, the statistics of predicted SOC showed uniformity with that of observed 

SOC. An examination of the data distribution revealed a consistent pattern between the observed and estimated 

SOC, with a standard error of 0.018. The spatial pattern resulting from the IDW interpolation revealed an 

upward trend in SOC density (ranging from 0.93 to 1.42) moving towards southern parts of the study area. 

Conversely, lower SOC values (ranging from 0.74 to 0.88) were noted in the central parts. However, SOC levels 

near water bodies exhibited higher values, likely attributable to the presence of sparse vegetation.  

As there was no dense vegetation in the desert area and only scattered trees/ fragmented shrubs were observed. 

Moreover, it has been revealed from the spectral indices computed from Landsat-9 images (of 30m resolution) 

that no prominent dense vegetation exist in the study area. Therefore biomass estimation in desert area was not 

possible based on the spectral information derived from medium resolution images of Landsat-9. However, data 

of biomass/ vegetation collected during field inventory have been explained. In order to quantify the tree specific 

biomas estimation, commercial satellite images upto spatial resolution of 0.5m or less required to mapping of 

scattered trees/ fragmented shrubs.  

 

Fig. 9. IDW Interpolation SOC Prediction; SOC of the desert has been interpolated through Inverse 

Distance Weightage (IDW) method and its resultant output map. 
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4. Discussion 

Natural ecosystems are the key source of above and below ground carbon and food source in the world 

(Vicharnakorn et al., 2014). Reduction in biological diversity always leads to the diminution of stored carbon 

stock that runs the natural ecosystems. Natural ecosystems are the key source of above and below ground carbon 

and food source in the world (Vicharnakorn et al., 2014). Reduction in biological diversity always leads to the 

diminution of stored carbon stock that run the natural ecosystems. Our study reveals that maximum amount of 

soil carbon was obtained in irrigated lands of Cholistan desert that was 2.125 in irrigated lands of desert and 

minimum was in sand dunes of lal-suhanra that was 1.260. Agricultural zones have more soil carbon than the 

desert because of land use and productivity (Srinivasarao et al., 3013). Desert type ecosystem always face the 

severe drought and temperature stress and cause soil deterioration that ultimately reduce the carbon storage in 

soil (Cusack et al., 2013; Lu et al., 2014). 

Blaser et al., (2014) and Ludwig, et al., (2004) studied the effects of savannah vegetation and woody 

encroachment on soil organic carbon and soil nutrients. They studied that nitrogen fixation genus vachellia fix 

and store nitrogen in soil and found that soil organic matter is very consistent with the nitrogen stored in the soil 

due to vachellia genus. Our study sites have nitrogen fixation species i-e vachellia nilotica, vachellia 

jacquemontii, prosopis juliflora and prosopis glandulus and found the similar kind of results that different study 

sites have different soil carbon as studied by (Blaser et al., 2014; Ludwig et al., 2004).  

Anwar et al., (2018) studied the biomass and carbon estimation of different tree species Ziziphus jujuba, Acacia 

nilotica, Ficus palmate and Acacia modesta and found that different species have different biomass, volume and 

carbon stock while our study reveals the similar kind of results in volume of Vachellia nilotica which is 3.286 m
3
 

in 2021 and 0.975 m
3
 in 2022, Ziziphus jujuba which is 0.277 m

3
 in 2021 and 1.164 m

3
 in 2022, Z. mauritiana 

which is 17.34 m
3
 in 2021 and 12.20 m

3
 in 2022, Z. spine cristi which is 3.962 m

3
 in 2021 and 2.432 m

3
 in 2022, 

Z. nummularia which is 0.330 m
3
 in 2021 and 0.243 m

3
 in 2022 as shown in table 2. Our study also reveals that 

similar kind of results in biomass and carbon stock (Anwar et al., 2018). 

Previously many researchers have found that variation in soil depth, vegetation structure, elevation and slope 

have different SOC contents (Bookhagen et al., 2005; Chan 2008; McGrath, and Zhang 2003). During the 

research we have found different SOC in ecosystem as CWLS and soil in LSNP. The study area LSNP and 

CWLS has 5 stratifications such as forest, agricultural land, sand dune, loamy and clay patch. Each site has 

different SOC contents Table 6 & 7, these results are similar to the findings of Bhunia et al., (2018) as they 

resulted different SOC in forest and agricultural areas. They also found different SOC at different soil depth 0 

upto 20, 20 to 40 and 40 to 100 cm depth. We have found the similar results that different soil depth has different 

SOC. During the study OK, IDW were used for SOC interpolation. Both of there were good but IDW was found 

more accurate than the OK. Bhunia et al., (2018) has found the same results and said IDW interpolation is better 

than OK for SOC. They also discussed the results of (Varouchakis, and Hristopulos 2013; Venteris et al., 2014; 

Tripathi et al., 2015) that found that IDW interpolation is the best for SOC.  

The current study includes the use of Landsat 9 and Landsat 8 spectral indices, the spectral indices included 

NDVI, SAVI, MSAVI, DVI and PVI. Pizana, et al., (2016) studied the remote sensing and geo-statistical 

techniques; used for vegetation and its biomass assessment. Coefficient of correlation for the MSAVI model (R
2
 

0.60) was lower than that of NDVI and SAVI, suggesting that this model explained around 60% of the biomass 

data, leaving 40% unexplained. In contrast, both DVI and PVI showed higher coefficient of correlation (R
2
 0.67) 

compared to all other indices, indicating that they explained approximately 67% of the field biomass data, with 

about 33% remaining unexplained. Barati, et al., (2011) also studied the SAVI, MSAVI, NDVI, DVI and PVI 

for vegetation indices. Clerici, et al., (2016) also find the same results by using NDVI, PVI, DVI, SAVI and 

MSAVI. Ahmad, et al., (2023) also used SAVI, MSAVI and NDVI and found MLR method is best for 

correlation rather than the simple linear regression to estimate for biomass production.  

5. Conclusion  

This study provides valuable insights into the spatial distribution of soil organic carbon (SOC) in the study area 

highlighting the influence of land use patterns, vegetation indices, and interpolation methods on SOC estimation. 

By employing geostatistical techniques alongside remote sensing data, the research effectively mapped SOC 

variability across diverse land use types. The findings reveal that SOC levels are significantly influenced by 

proximity to water bodies, vegetation density, and land use type, with higher values near water bodies due to 

sparse vegetation. The study underscores the importance of integrating field sampling with remote sensing-

derived vegetation indices to improve SOC prediction accuracy in arid and semi-arid regions. Additionally, the 

spatial distribution patterns observed through IDW and OK interpolation methods provide a foundational 

framework for identifying areas with high carbon storage potential. This information is critical for establishing 

carbon sink centers aimed at mitigating the adverse effects of climate change and global warming. This research 

not only advances our understanding of SOC dynamics in ecologically sensitive areas but also offers practical 
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applications for sustainable land management and climate change mitigation strategies. While Landsat data 

provided moderate-resolution insights, future work should consider incorporating higher-resolution data (e.g., 

Sentinel-2 at 10m or commercial imagery with sub-meter resolution) and advanced methods such as machine 

learning or radar-optical fusion to improve predictions in arid and sparsely vegetated landscapes. 

Abbreviation  

O=Ordinary Kriging 

SOC =Soil Organic Carbon  

IDW= Inverse distance weighting  

LSNP=  Lal Suhanra National Park  

CWLS=  Cholistan Wildlife Sanctuary  

TC= Total Carbon 

LULC= Land use land cover  

BGB= Below Ground Biomass 

AGB= Above Ground Biomass  

V= Volume  

WD= Wood Density   

BEF= Biomass Expansion Factor  
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