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LIMATE-INDUCED stress on irrigation water usage is escalating rapidly across the globe, 

especially in arid and semi-arid regions like Egypt, where climate change and water scarcity 

create unsustainable conditions for agriculture. Notably, the Development of innovative and practical 

methods for estimating reference evapotranspiration (ETo) is important for efficient irrigation 

scheduling. This study evaluated the efficacy of six machine learning (ML) algorithms, Linear 

Regression (LR), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Decision Tree 

(DT), Random Forest (RF), and XGBoost, in estimating ETo, utilizing long-term meteorological 

variables from publicly available datasets. Three established empirical models served as baseline 

comparisons: FAO Penman-Monteith (PM), Hargreaves (HA), and Blaney-Criddle (BC). Each model 

was assessed using historical daily meteorological data retrieved from the NASA POWER database, 

which provides reliable long-term climate records relevant to agricultural applications. Model 

performance was evaluated based on a test using three statistical metrics: coefficient of determination 

(R²), root mean square error (RMSE), and mean absolute error (MAE). When comparing the ETo 

estimation methods, the Blaney-Criddle (BC) equation used in combination with ML models 

displayed the most accurate predictions. In terms of ML algorithms, Random Forest (RF) consistently 

outperformed other algorithms with RC² = 0.98 and RMSE =0.12 mm/day when using the BC 

equation during testing. Support Vector Regression (SVR) performed well for all models as well. RF 

appeared to be the best ML algorithm, and the BC equation was the best ETo model for the study area 

and conditions studied. It supports the use of ML models to enhance ETo estimation with limited 

meteorological data, particularly evident in water-scarce surroundings such as Egypt. The current 

study aims to fill the gap of localized ETo estimation models in Egypt by comparing ML predictions 

to traditional empirical models using long-term climatic data, thus providing a valuable contribution 

to the body of research on precision irrigation through the use of imperfect use of data. A specific 

focus on the Behera Governorate of Egypt determines a relationship between prioritized adaptive 

irrigation models where temperature rises and variable rainfall, complexifying irrigation demands, 

and increasing evaporation. The main aim of this study is to evaluate and compare traditional ETo 

estimation equations and machine learning algorithms to determine the most accurate and robust 

method for ETo prediction in arid climates with limited data availability. 

Keywords: Machine learning; Evapotranspiration estimation; Random Forest; Blaney-Criddle; Arid 

agriculture; Data-driven irrigation. 

1. Introduction 

Water scarcity is a significant problem in many regions, and the combination of factors like poor standards of 

water management, climate change, and population growth makes it difficult to produce crops sustainably - 

especially so in arid and semi-arid regions like Egypt (Emran et al., 2024). Working towards this requires 

maximizing water use efficiency, which ultimately relies on accurately estimating reference evapotranspiration 

(ETo). ETo is an important variable in irrigation scheduling, crop productivity, and long-term agricultural water 

management (Agyeman et al., 2024; Rashad, 2024). In conditions limited by water, such as Egypt, this means 

estimating ETo as accurately as possible to maximize the effective use of available water resources (Raza et al., 

2020; Allen et al., 1998). ETo is defined as the potential water loss by plant transpiration and soil evaporation for 

a hypothetical reference crop under standard conditions (Allen et al., 1998; Chouaib et al., 2022). The 

development of ETo estimation methods can be empirical, relying on physical models in either case, which are 

based on the analysis of meteorological data. Direct measurements of ETo, such as lysimeters and pan 

evaporation, estimate actual ET (ETa) rather than ETo, which is beyond the scope of this study. Pan evaporation 
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is a popular hydrological method that allows for direct measurements; hence, it is not considered in this 

discussion of indirect estimation methods.  

The FAO-56 Penman-Monteith (PM) equation, although an indirect method, is the most widely accepted 

because it has been proven effective in various climates (Allen et al., 1998). The advantage of the PM is that it 

only requires key weather variables (temperature, relative humidity, solar radiation, and wind speed) to estimate 

ETo. Zhang et al. (2023) noted that temperature and solar radiation were the most significant variables in 

estimating ETo using PM. In areas with limited meteorological data coverage, simpler methods, such as the 

Hargreaves-Samani (HA) and Blaney-Criddle (BC) equations, are often employed (Hargreaves & Samani, 1985; 

Thongkao & Kongchu, 2022). These models require fewer data inputs and are beneficial as alternatives to the 

more data-intensive models when available climate data is not comprehensive. However, they do not include key 

climatic factors, such as humidity and wind speed. They may not reliably provide estimates of ETo in certain 

climates, which can result in an underestimation of ETo in conditions of high wind (Shiri & Yaseen, 2021). 

Efforts have been made to enhance the regional applicability of the HA method, such as incorporating climate 

coefficients applicable to Iran (Ogunrinde et al., 2022). Similarly, the BC method has reasonable accuracy for 

temperate climates; however, it demonstrates less reliability in arid environments or those with rapid changes 

(Momen & Abdelatti, 2021; Mobilia, 2021).  

To overcome the limitations of conventional approaches, particularly in situations where data may be missing or 

the conditions are complex, researchers are increasingly using machine learning (ML) approaches to estimate 

ETo. ML models offer flexibility because they can learn complex, non-linear relationships in data and adapt to 

noisy or missing data (Farooque et al., 2022a; Chen & Guestrin, 2016). Several algorithms (Linear Regression 

(LR), K-Nearest Neighbors (KNN), Decision Trees (DT), Support Vector Regression (SVR), Random Forest 

(RF), Extreme Gradient Boosting (XGBoost)) have been proven useful in numerous agro-climatic environments. 

Several studies have characterized ML algorithms, particularly Random Forest and Support Vector Regression, 

as having the potential to accurately and reliably provide ETo predictions under different environmental 

conditions (Gong et al., 2021a; Kar et al., 2021; Kumar & Mishra, 2024a,b; El Azhar et al., 2024a). Other 

methods, including certain forms of KNN and XGBoost, also provided very high accuracy, provided proper 

hyperparameter tuning was performed. Granata (2019) and Granata & Nunn (2021) have also employed ML 

methods for ETo modeling in data-limited regions, reporting compelling results despite considerable climatic 

differences. Validation methods, such as walk-forward validation, were frequently used to assess the reliability 

of predictions over the specified time results (Farooque et al., 2022b). This approach enables models to retrain 

iteratively with new data, facilitating continuous evaluation in dynamic settings and allowing ETo models to 

transition toward more reliable predictions. While my models are extremely flexible, they present modeling 

aspects and, therefore, data preprocessing issues, as well as adequate algorithm selection and parameter tuning 

that need to be considered to provide reliable predictions (Dos Santos Farias et al., 2020). These modeling 

conditions would also be present in traditional ETo equations and would remain relevant when applied to 

separate ecological zones from different climatic regions.  

This study set out to assess the accuracy and reliability of traditional methods for estimating ETo (Penman-

Monteith, Hargreaves-Samani, and Blaney-Criddle) in Egypt, which has a predominantly arid climate, and 

compare these estimates with six machine learning models (LR, KNN, DT, RF, SVR, and XGBoost) trained on 

local meteorological datasets. The intention was to identify the best-performing method that would produce ETo 

estimates that were both precise and practical in water-limited agricultural regions. 

2. Materials and methods 

2.1.  Experimental 

The study was conducted on a farm located on reclaimed land in the Behera Governorate of Egypt (30° 

38'29.24"N, 30° 0'38.99" E). As seen in Figure 1, the farm grows three-year-old Valencia orange trees spaced 5 

× 4 meters apart and irrigated using a drip system (GR) with emitters delivering water at 4 L/hour positioned 50 

cm from each tree. Long-term climatic data (1985–2022) were sourced from the NASA POWER database 

(Sparks, 2018; White et al., 2020). The statistical description of key weather parameters was as follows: 

minimum, maximum, and mean air temperatures were 14.6°C, 28.4°C, and 20.7°C, respectively; relative 

humidity averaged 59.0% with a standard deviation of 6.3%; wind speed averaged 2.9 m/s; and net solar 

radiation at the surface was 20.0 MJ/m²/day (with a top-of-atmosphere value of 31.4 MJ/m²/day). Annual 

precipitation ranged between 13.9 mm (in 2010) and 252.9 mm (in 2020), with a long-term mean of 73.3 mm 

and a coefficient of variation (CV) of 58.2%. Reference evapotranspiration (ETo) values are not presented in this 

section, as detailed results and equations used (e.g., FAO Penman-Monteith) are provided later in the Results 

section. 
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2.2. Data acquisition  

Meteorological data were obtained from the NASA POWER database, a long-term global climate database 

suitable for agro-climate modeling (Sparks, 2018; White et al., 2020). The dataset consists of daily data for air 

temperature, relative humidity, wind speed, solar radiation, and precipitation from 1985 to 2022. Data were 

downloaded from the NASA website (Figure 2), where data are available for download, and users select the 

desired measurements by geocoding coordinates. The data used in this study are also visible via NASA POWER 

https://power.larc.nasa.gov. These daily data were then used to calculate reference evapotranspiration (ETo) 

using ETCalc, an easy-to-use online calculator that employs the FAO Penman-Monteith equation for ETo 

calculations, as well as the Hargreaves and Blaney-Criddle methods for specific climates (Danielescu, 2022a; 

Danielescu, 2022b; Schomberg et al., 2023). Several studies, including those conducted in semi-arid climates, 

have validated ETCalc outputs (Danielescu, 2022a; Schomberg et al., 2023). Despite not conducting a lysimeter 

comparison, Behera's climate could be likened to previous ETCalc validations. Therefore, this reinforces its use 

under Egyptian conditions. For further applications, researchers may consider using REF-ET generated by Idaho 

University, which offers more functionality for estimating ETo in various environments. See links for more 

details about REF-ET software https://www.uidaho.edu/cals/kimberly-research-and-extension-

center/research/water-resources/ref-et-software) and ETCalc software https://www.etcalc.com.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The location of study area. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. NASA’s POWER Data Access Viewer. 
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2.3. The FAO-Penman-Monteith (FAO-PM) equation 

ETo is usually computed using the FAO-PM formula. (Allen et al., 1998) provide it as an equation 1. 

 

 

 

 

 

Where: 

         ETo : reference crop evapotranspiration, mm/day.  

         Rn   : net radiation, MJ/m
2
/day. 

         G     : soil heat flux MJ/m
2
/day.  

         T     : average daily air temperature at the height of 2 m, °C.  

         u2    : wind speed at a height of 2 m, m/s.  

        es    : saturation vapor pressure, kPa.  

        ea    : actual vapor pressure, kPa.  

        es – ea : vapor pressure deficit, kPa.  

        Δ   : slope of the saturation vapor pressure- temperature curve, kPa /°C.  

        γ   : is the psychometric constant, kPa/ °C. 

2.4. Hargreaves equation (ETo_HA) 

The Hargreaves model is one of the more often used variants of a prior evapotranspiration model (Tabari, 2010). 

As described by Hargreaves and Allen 2003, this model's form is shown by equation 2. 

ETo = 0.0023Ra (Ta + 17.8) (Tmax − Tmin) 
0.5

  (2) 

Where: 

        Ra : water equivalent of extraterrestrial radiation, mm/day.  

        Ta : mean air temperature, °C.  

        Tmax : daily maximum temperature, °C.  

        Tmin : daily minimum temperature, °C. 

2.5. Blaney-Criddle equation (ETo_BC) 

The original Blaney-Criddle equation (Doorenbos, J.; Pruitt, 1977) determines ETo using the mean daily air 

temperature and The equation used to determine the average hourly distribution throughout the day is given as 

follows: 

ETo = a + b [p(0.46T + 8.13)]     (3) 

Where: 

         a , b : calibrated constants.  

         p     : the average daily percentage of total annual daytime hours. 

        T     : the average daily air temperature, °C. 

2.6. Dataset Pre‑ processing 

Data pre-processing converts unstructured data into a consistent, clear form to improve model accuracy and 

performance, a fundamental step in machine learning. This stage comprises various processes: feature 

transformation, feature scaling, feature selection and the handling of outliers and missing values. The pre-

processing phase prepares the training and testing datasets required for model building and evaluation. 

Successful machine-learning projects depend on a well-planned pre-processing step (Eke et al., 2020). 

2.6.1 Handling missing values, outliers, and normalization 

Missing data can distort forecasting models and increase the sensitivity to outliers, necessitating effective 

management techniques (Lin & Tsai, 2020). Imputation techniques (such as mean or median imputation) can 

substitute missing data (Khan & Hoque, 2020). Outliers differ significantly from the remaining data, which can 

cause distortions in analysis. Being able to identify and address outliers using robust methods, such as the Z-

score and IQR, is essential when managing data (Singh & Patna, 2022). Lastly, normalization is the process of 

ensuring that the data values fall within a common range (0-1) using the min-max method, allowing the model to 

learn efficiently and minimizing the severity of weighting larger values (Soomro et al., 2022). 

 

 

 

ETo = 

0.408Δ(Rn−G) + γ 900 

T+273 

[es−ea]U2 

Δ+ γ (1+0.34* U2) 

(1) 

Xnorm = 
Xn -  Xmin 

Xmax -  Xmin 
(4) 
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Where:  
Xnorm : the homogenized value. 

Xn     : the adjusted value.  

Xmax  : the highest value. 

Xmin  : the lowest value of the details.  

2.7. Train test split  

In time series analysis, time is a crucial factor. The train-test split involves dividing the dataset into two groups: 

a training dataset (historical) and a testing dataset (future). This division method is frequently employed in 

outdoor conditions forecasting (e.g., weather and energy). When modeling a time series, the testing dataset 

consists of future data to validate the model's performance. In contrast, the training dataset consists of past data 

that enables the model to learn. In the current research, 80% of the data was used for training (January 1, 1985 to 

December 31, 2015), and 20% was used for testing (January 1, 2016 to December 31, 2022) (Gul et al., 2022). 

The split is illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8. Machine Learning Models for Predicting reference evapotranspiration (ETo) 

The ML in this study utilized inputs of maximum and minimum air temperature, relative humidity, solar 

radiation, and wind speed, all of which directly affect ETo. The same variables were consistently used across 

models. Temperature influences evaporation; relative humidity affects the moisture in the air; solar radiation 

provides the energy for evaporation, and wind speed promotes the transport of moisture away. Hyperparameter 

tuning with GridSearchCV using 10-fold cross-validation was performed for each season to minimize 

overfitting. The data was divided into 10 sets, with the models trained on nine sets of the data and validated on 

the other. Hyperparameters such as the number of trees for Random Forest (n_estimators), maximum depth for 

RF (max_depth), C, and epsilon for Support Vector Regression (SVR) were tuned based on past literature and 

evaluation. Models were evaluated based on RMSE and R
2 

and optimized to select the combination with the 

lowest RMSE and the highest R
2
 from a set of trials. Tuning was performed based on the climate in the study 

region to optimize the model for agricultural practices further. 

2.8.1. Linear Regression  

Linear regression is a popular statistical technique and machine learning method used to determine a linear 

relationship between one or more independent variables and a dependent variable. Linear regression is simple, 

common, and effective in both data analysis and machine learning (Maulud & Abdulazeez, 2020). There are two 

                 Fig. 3. illustrates the data split into training and testing sets. 
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versions of linear regression: simple regression (with one independent variable) and multiple linear regressions 

(with multiple independent variables) (Maulud & Abdulazeez, 2020). Linear regression has been demonstrated 

to be effective for modeling reference evapotranspiration (ETo) (Belayneh et al., 2014; Kisi and Kim, 2015; Jain 

et al., 2022), as well as for forecasting hydrology and agriculture. 

2.8.2. K-Nearest Neighbours  

The K-Nearest Neighbors (KNN) approach can distinguish data when uncertainty is present. The KNN method 

requires you to select an appropriate K-value, which determines the number of nearest data points to consider in 

our prediction. If we apply a K-value that is too high, we may create uncertainty; if we apply a K-value that is 

too low, we may overlook the noise. We also recommend using an odd K-value to mitigate errors (Bansal et al., 

2022). KNN has been applied to the modeling of reference evapotranspiration (ETo). Shiri et al. (2012), 

Emamgholizadeh et al. (2014), and Ahoojelay et al. (2021) provide evidence in support of the KNN method as a 

promising approach for forecasting hydrologic variables in any global climate. 

2.8.3. Extreme Gradient Boosting  

Boosting is an ensemble method that enhances accuracy by combining the predictions of weak learners to create 

stronger ones. XGBoost is a gradient-boosting methodology that develops an ensemble of decision trees (Chen 

& Guestrin, 2016) by assigning weights to features based on their importance in the model. This method 

evaluates variance about optimally fitting the model to the tree ensemble (Wu & Fan, 2019). The effectiveness of 

XGBoost stems from its ability to leverage parallel computing and forgoing overfitting in decision trees 

(Ghimire & Amsaad, 2024). XGBoost has been previously applied with ETo modeling in various climatic zones, 

and its accuracy has been reported to be superior to that of other methodology approaches. (Li et al., 2021; Xu et 

al., 2022; Sharifi et al., 2023). 

2.8.4. Support Vector Regression  

SVR was developed by Vapnik in 1995, utilizing the support vector machine (SVM) specifically designed for 

regression. SVR learning solves the separation hyperplane with the maximum geometric gap and essentially 

divides the training data set (Xie, Li, et al., 2021). SVR was also successfully utilized in ETo estimation in 

several studies, specifically Pal & Deswal (2020), PourAli et al. (2021), and Eslamian et al. (2022), indicating 

that it is applicable in distinct climatic conditions. 

2.8.5. Decision Tree  

Decision trees (DTs) are commonly used for supervised learning in classification but can also be applied to 

regression. A decision tree (DT) is composed of decision nodes (the specific attributes to test), leaf nodes (the 

output classes), paths (the sequence of tests), and edges (the connections between nodes). In the simplest terms, a 

decision tree (DT) is a flowchart with nodes representing tests, branches representing results, and leaves 

representing the final class or outcome (Eke et al., 2020). Since DTs can fit nearly anything (even combinations 

of random noise), overfitting can become a concern. Random forests combat this by limiting tree depth to 

minimize the correlation between trees and by averaging the predictions (Eke et al., 2020). Decision tree models 

have been utilized in agricultural water management to estimate ETo across various climates (Alipour et al., 

2020; Moazed et al., 2021; Babaeian et al., 2023). 

2.8.6. Random Forest  

Random Forest (RF) is a type of ensemble learning model for classification and regression (Akay, 2021) 

developed by Breiman in 2001. The framework consists of two steps: (1) building multiple decision trees by 

randomly sampling features using the bagging method and (2) combining the predictions for all trees, which is 

done by voting for classification and averaging for regression. The Strong Law of Large Numbers mitigates 

overfitting, and as the number of trees increases, the prediction error decreases (Breiman, 1999), eliminating the 

need for pruning. RF has been widely used for ETo estimation and is successfully applied to complicated 

datasets and across variable environmental conditions (Gong et al., 2021b; Kumar and Mishra, 2024b; El Azhar 

et al., 2024b). 

2.9. Tuning Hyper-Parameters  

Hyperparameters define a machine learning (ML) model before it is trained, while model parameters are 

estimated during training. Hyperparameter tuning is crucial for achieving the optimal model. Hyperparameter 

tuning prevents underfitting and overfitting. This study used a scikit-learn module called GridSearchCV for 

hyperparameter tuning. GridSearchCV exhaustively searches parameter grids using k-fold cross-validation 

(Pedregosa et al., 2011). To perform hyperparameter tuning on each model, the range of hyperparameter values 

was based on previous studies and pre-testing. The data was split into 10 folds, and the model was trained on 

nine folds. Predictor augmentation was cross-validated using one fold held out per model. RMSE and R² were 
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calculated for every combination of hyperparameters. The optimal hyperparameter set was chosen based on the 

lowest root mean squared error (RMSE) and has the highest R² value. This process also supported proper tuning 

by balancing the bias-variance trade-off considering the specific arid climate of the study area. For more 

information about the GridSearchCV implementation, please refer to the documentation available from the 

scikit-learn website https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html.  

2.10. Statistical evaluation indicators 

The coefficient of determination (R²), mean absolute error (MAE), and root mean square error (RMSE) are the 

measures of performance for ML algorithms. The higher value of R² (closer to 1) represents better performance, 

while RMSE and MAE provide information on the differences between predicted and observed values (Azzam et 

al., 2022). The indicators can be defined as follows: 

 

 

 

            

 

 

 

 

Respectively, x, y, RSS, and TSS stand for the observed variable, the simulated variable, the residual sum of 

squares, and the total sum of squares. In this context: 

n :  denotes the total number of observations, 

i    : represents the index of each observation, running from 1 to n, 

X_i  : is the observed value of the variable at the iᵗʰ observation, 

Y_i  : is the simulated or predicted value of the variable at the iᵗʰ observation. 

These definitions were formulated using the same notation employed in calculating residuals, residual sum of 

squares (RSS), and total sum of squares (TSS). The stages of this study, the Penman-Monteith, Hargreaves, and 

Blaney-Criddle machine learning algorithms to predict ETo values from weather data, are represented in Figure 

4. The infographic shows the stages of this study, including data collection and processing. The meteorological 

data were collected from NASA's POWER database; with ETo values calculated using the ETCalc software with 

the PM, HA, and BC methods. The machine learning algorithms included LR, KNN, SVR, XG-Boost, DT, and 

RF, with R², RMSE, and MAE used to assess the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Demonstrate the methodology of the study. 
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3. Results  

3.1. Trend analysis of other climate data and reference evapotranspiration (ETo) 

This study analyzed annual ETo values from 1985 to 2022 using the Penman-Monteith (ETo-PM), Hargreaves 

(ETo-HA), and Blaney-Criddle (ETo-BC) equations, along with other climate parameters, to investigate long-

term climatic trends associated with water management. The trends for ETo and climate parameters presented in 

Figures 5 and 6 revealed that both ETo-PM and ETo-BC exhibited positive trends, while ETo-HA had a weak 

decreased trend. Rainfall averaged 0.2 mm for the entire record (with mean annual 0.2 mm, minimum 0.04 mm, 

maximum 0.69 mm - overall average 0.2 mm). The highest rainfall value occurred in 2021, while the lowest 

values were observed in 1999 and 2010. The annual average air temperature (Tmean) (mean 20.7°C, min 19.7°C, 

max 22.0°C) trend ranged from an increase of 0.8°C in Tmean, 0.6 °C in Tmin, and 1.2°C in Tmax, that correspond 

to likely shifts in local agricultural practices and environmental conditions. The conclusions presented in this 

study emphasize the importance of maintaining continuous monitoring. In summarizing, the solar radiation data 

for solar radiation (SR_TOA) at the top of the atmosphere showed a mean value of 31.4 MJ/m²/day and a 

variable time series of 3.7 MJ/m² for surface solar radiation (SR_SFC). 

This discrepancy illustrates the differences between surface and atmospheric solar radiation. The average relative 

humidity was 59.0%, with a 0.9% increase. Subsequently, the average wind speed was 2.9 m/s with little 

variability. Concerning ETo values, the daily means for ETo-PM was 4.9 mm/day, ETo-HA was 4.4 mm/day, 

and ETo-BC was 4.9 mm/day. ETo-PM, ETo-HA, and ETo-BC increased and decreased by 0.025 mm, 

compared to ETo-HA and ETo-PM, respectively. Statistical analysis (p < 0.05) indicated significant differences 

among the ETo estimates from the three ETo equations. Table 1 summarizes the ETo in terms of annual values 

for the three equations, including the mean, standard deviations, R² values, and results from statistical 

significance tests (ANOVA, p < 0.05). The Penman-Monteith (ETo-PM) indicated a mean ETo of 4.9 mm/day, 

0.3 standard deviation with R² = 0.92, which were statistically significant (p < 0.05) when compared to 

Hargreaves (ETo-HA) and Blaney-Criddle (ETo-BC) methods. Likewise, Hargreaves (ETo-HA) mean ETo was 

4.4 mm/day, with a 0.2 standard deviation and R² = 0.89, which were statistically significant (p < 0.05) 

compared to ETo-PM and ETo-BC. Blaney-Criddle (ETo-BC) had a mean of 4.9 mm/day, with an R² of 0.94 

and p < 0.05, also significantly different from the other methods. Correlation analysis indicated wind speed had a 

strong inverse correlation (R = -0.66) with ETo-PM, while relative humidity was relevant for ETo-PM but not 

for ETo-HA. Differences between the three equations were statistically significant, as shown in Table 1. The 

significant correlations established in this analysis confirmed that ETo-PM and ETo-BC are more reliable 

estimates for reference evapotranspiration in this region and are suitable models to employ in arid climatic 

regions for water resource management. These results will be important for farmers and water resource managers 

to improve irrigation scheduling and water allocation. The statistical analysis provided explicit support for using 

robust ETo models, which accurately account for local climatic conditions, thereby enabling better decision-

making in agricultural planning and production. This study also highlights the advantages of using the Penman-

Monteith and Blaney-Criddle models in arid climatic environments for the effective management of water 

resources, given that both models exhibit significant accuracy and predictive power based on local climate data. 

3.2. correlation matrix 

Correlation matrices from the Penman-Monteith (PM), Hargreaves (HA), and Blaney-Criddle (BC) datasets were 

generated, as illustrated in Figures 7, 8, and 9, which showcase the relationships between meteorological 

variables and reference evapotranspiration (ETo). The three methods generally showed strong correlations with 

Tmean (Mean air temperature) and Tmax (Maximum temperature), with comparatively moderate correlations with 

Tmin (Minimum temperature). Solar radiation at the top of the atmosphere (SRTOA) and surface solar radiation 

(SRSFC) exhibited strong positive correlations with ETo for both the ETo-PM and ETo-HA methods. The 

largest negative correlation of -0.66 was found between relative humidity (RHmean) and ETo for the ETo-PM 

method, indicating an inverse relationship, i.e., as humidity increases, ETo decreases, which is somewhat 

expected in the final calculation. Wind speed (WND) had a uniquely weak relationship with ETo; ETo-PM 

correlated slightly higher (0.34) than ETo-HA. Temperature, solar radiation, and relative humidity were 

identified as the primary factors affecting ETo; therefore, without considering these parameters, ETo could not 

be calculated. The strongest correlations for PM were Tmax and SRTOA (r = 0.9) and Tmean (r = 0.89). For HA, 

solar radiation (SRTOA) had the highest correlation (0.93) with ETo, followed by maximum temperature (Tmax) 

at 0.92. In the BC method, Tmean had the highest correlation (0.96) with ETo, followed by Tmax (0.95). The results 

of this study show that wind speed has a negligible influence on ETo compared to temperature and solar 

radiation; of the three methods studied, the Blaney-Criddle method (ETo-BC) had the most significant 

correlation coefficients, indicating that it is the best method for estimating ETo based on the climate conditions 

examined in this study. The study results emphasize the necessity of accurately measuring temperature, solar 

radiation, and relative humidity when calculating ETo. In arid regions like Egypt, where temperature and solar 

radiation are the primary contributors to evapotranspiration, the ETo-BC method is likely the most accurate 
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method for estimating ETo. The robustness of the ETo-BC method will be particularly helpful for irrigation 

scheduling, water allocation, and mitigating crop yield losses in regions of paramount concern in arid and semi-

arid regions. The findings from this study will be beneficial to agricultural professionals, policymakers, and 

water resource managers who are focused on enhancing water efficiency in areas where the effects of water 

scarcity and climate change are becoming increasingly pronounced on sustainable crop production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The long period climate values of (A) precipitation (mm), (B) mean temperature (°C), (C) 

maximum temperature (°C), (D) minimum temperature (°C), (E) solar radiation at top-of-

atmosphere (MJ/m
2
/day), (F) solar radiation at surface of the ground (MJ/m

2
/day), (G) wind 

speed (m/s), and (H) relative humidity (%) of study area from (1985–2022). 
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Fig. 6. The long period climate values of (I) reference evapotranspiration calculated by 

Penman-Monteith method (PM) (mm), (J) reference evapotranspiration 

calculated by Hargreaves method (HA) (mm) and (K) reference 

evapotranspiration calculated by Blaney-Criddle method (BC) (mm) of study 

area from (1985–2022). 
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Fig. 7. Correlation matrix for Penman-Monteith method. 

 

 

Fig. 8. Correlation matrix for Hargreaves method. 

Fig. 9. Correlation matrix for Blaney-Criddle method. 
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3.3. predicted and actual daily ETo values 

Figure 10 shows the relationship between actual and predicted daily ETo values. The line graphs in Figures 10A, 

B, and C show a strong parallel distribution of the actual and predicted ETo values, with the predicted values 

closely following the actual values. This demonstrates the high level of precision of the predicted ETo values 

compared to the actual ETo values. The scatterplots displayed in Figures 10 D, E, and F provide a contrasting 

view of the relationship between predicted and actual ETo values. The R² values for the relationships between 

predicted and actual ETo were 0.92, 0.94, and 0.98 for the Penman-Monteith (PM), Hargreaves (HA), and 

Blaney-Criddle (BC) equations, respectively, indicating a strong correlation between predicted and actual ETo 

values. This suggests that the Random Forest (RF) machine learning method performed well in this study. The 

performance of the Random Forest model in this study demonstrates the effectiveness of RF models in 

predicting ETo, particularly when compared to other methods. These results are particularly useful for arid and 

semi-arid regions, such as Egypt, where accurate predictions of ETo are crucial for enhancing agricultural water 

management strategies. In such conditions, characterized by consistently hot temperatures and strong sunshine 

throughout the year, it is essential to understand the behavior of evapotranspiration (ETo) in order to determine 

irrigation needs accurately. This will allow farmers and water resource managers to use accurate predictions of 

ETo to optimize the timing of irrigation events and thereby reduce water wastage (more efficient allocation of 

water) in pursuit of improved agricultural sustainability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Line charts and scatter plots showing the comparison of predicted and actual ETo values 

and their relationship for A, D Penman-Monteith method (PM) (mm), B, E by Hargreaves 

method (HA), and C, F Blaney-Criddle method (BC) during the testing period. 
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Table 1. Statistical Summary and Significance of Reference Evapotranspiration (ETo) Estimates Using 

Different Empirical Equations (1985–2022). 

Equation 
Mean ETo 

(mm/day) 

Std. 

Dev 

R² (Coefficient of 

Determination) 

p-

value 
Significance Comment 

Penman-

Monteith (PM) 
4.9* 0.30 0.92 0.01 

Significant 

(p<0.05) 

Statistically different 

from HA and BC 

Hargreaves 

(HA) 
4.4* 0.20 0.89 0.01 

Significant 

(p<0.05) 

Statistically different 

from PM and BC 

Blaney-Criddle 

(BC) 
4.9* 0.25 0.94 0.01 

Significant 

(p<0.05) 

Statistically different 

from PM and HA 

3.4. performance analysis 

The dataset was randomly divided into 80% for model training and 20% for testing to further validate 

generalizability. Six machine learning (ML) methods were employed to either replicate or improve upon the 

empirical ETo equations, including the Penman-Monteith (PM), Hargreaves (HA), and Blaney-Criddle (BC) 

models. The ML studies' input feature set corresponded to the covariates in the empirical equations, for example, 

temperature, relative humidity, solar radiation, and wind speed. Feature Importance analyses, especially in 

ensemble models such as Random Forest (RF) and XGBoost, revealed that for the ML-PM models, solar 

radiation and wind speed were the most important factors, while for the ML-BC models, temperature and 

sunshine duration were the most important. Indeed, strong linear relationships in the dataset between selected 

predictors and observed ETo (Figures 7-9) also suggest it. Model performance was considered on three metrics: 

mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R²). Random 

Forest achieved the highest accuracy from the training and testing datasets. For example, in PM-based modeling, 

RF achieved R² = 0.96, RMSE = 0.44 mm/day, and MAE = 0.32 mm/day during the training phase, and R² = 

0.94, RMSE = 0.51 mm/day, and MAE = 0.36 mm/day during the testing phase. Similarly, RF performed well, 

with R² values greater than 0.98 in both HA and BC models, particularly in the BC models, indicating high 

accuracy. SVR and XGBoost both exhibited reasonable predictive accuracy, especially with HA and BC models, 

while KNN remained stable and was consistently comparable. Decision Trees (DT) and Linear Regression (LR) 

generally produced lower predictive accuracy, but it was still within acceptable ranges. RF consistently produced 

the highest predictive accuracy across the ETo equations against the six other ML algorithms - R² = 0.99, RMSE 

= 0.11 mm/day and MAE = 0.08 mm/day during training, and R² = 0.98, RMSE = 0.12 mm/day and MAE = 0.09 

mm/day during testing for Blaney-Criddle; SVR, XGBoost, and KNN produced reasonable accuracy below RF; 

while DT and LR showed the least accuracy, but still in acceptable ranges. These results demonstrate that RF 

and other ML methods produce reasonable accuracy and predictive value in replicating existing ETo equations, 

highlighting the potential of ML methods to enhance the predictive power of ETo equations and inform better 

irrigation management, thereby increasing water use efficiency, especially in arid and semi-arid regions. 

Table 2. Performance criteria for ETo techniques employing chosen algorithms. 

Methods ML Algorithms 
Training Testing 

R
2
 RMSE MAE R

2
 RMSE MAE 

PM 

LR 0.91 0.64 0.45 0.90 0.68 0.47 

KNN 0.93 0.57 0.39 0.91 0.62 0.43 

XG-Boost 0.94 0.53 0.37 0.92 0.59 0.40 

SVR 0.95 0.50 0.35 0.94 0.52 0.37 

DT 0.92 0.58 0.41 0.89 0.66 0.48 

RF 0.96 0.44 0.32 0.94 0.51 0.36 

HA 

LR 0.93 0.48 0.35 0.92 0.50 0.36 

KNN 0.95 0.41 0.30 0.93 0.46 0.34 

XG-Boost 0.96 0.39 0.28 0.94 0.44 0.31 

SVR 0.96 0.38 0.27 0.95 0.41 0.29 

DT 0.94 0.42 0.32 0.91 0.49 0.37 

RF 0.97 0.35 0.26 0.95 0.39 0.29 

BC 

LR 0.97 0.20 0.14 0.96 0.23 0.16 

KNN 0.98 0.12 0.09 0.97 0.14 0.10 

XG-Boost 0.98 0.14 0.11 0.97 0.18 0.13 

SVR 0.99 0.13 0.10 0.98 0.15 0.11 

DT 0.97 0.19 0.14 0.96 0.22 0.16 

RF 0.99 0.11 0.08 0.98 0.12 0.09 
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4. Discussion 

The large increases in ETo values can be explained by temperature as a class of independent variables 

contributing to water evaporation. Temperature promotes more evaporative and transpiration processes through 

an increased vapor pressure deficit between the leaf surface and the atmosphere. The effects of temperature on 

relative humidity and saturation capacity are identified in the FAO-56 protocol. Among the climatic drivers, 

solar radiation is the most basic factor controlling the processes of evapotranspiration. Solar radiation is the 

primary source of energy that is measured and applied as the latent heat added to a small mass of liquid water 

until it is transformed into vapor (water vapor). Solar radiation does connect directly to net radiation (Rn), and 

this energy term is identified in the FAO Penman-Monteith equation as with the amount of energy available for 

use, and it also measures other energy processes of water. In sunshine climates with sunshine, especially where 

we find arid and semi-arid climates, changes in solar radiation have shown to provide most of the variability seen 

in the ETo process compared to other meteorological drivers of wind velocity or relative humidity. The radiation 

nature of increasing the vapor pressure gradient in clear skies, with increased temperature variations, increased 

the magnitude of the evapotranspiration process. There are important compounding aspects of diurnal motion 

and seasonal radiation patterns to enhance the above dynamics of ETo and also guide us on the timing of 

irrigation in precision agriculture. Thus, solar radiation is undoubtedly the most important factor influencing ETo 

and must be incorporated into any robust ETo modeling framework. If not, ETo estimates are not valid, 

especially in solar-rich regions. These results are supported by other studies (e.g., Allen et al., 1998; Zhang et 

al., 2023; Zarei and Mahmoudi, 2023; Agyeman et al., 2024; Vaz et al., 2024).  Compared to wind speed, 

relative humidity (RH) is a relatively stronger and more sensitive variable determining ETo, especially in dry 

regions. There is a very strong inverse relationship between RH and evaporation due to low RH creating a higher 

moisture gradient between the crop surface and the surrounding air, leading to increased water loss. RH directly 

impacts the vapor pressure deficit (VPD), which is a primary control of water loss from soils and plants. Wind 

speed diminishes the stagnation of air near the crop surface under some conditions to promote evaporation, while 

RH is generally a constant and necessary consideration, particularly in arid and semi-arid regions. The relatively 

dry air and high VPD often found in these regions result in large changes in ETo for small changes in RH. This 

serves to emphasize the need to trust accurate RH measurements in models of ETo as the main priority while not 

providing as much weight to wind speed so that consistency of the model is achievable. These findings are 

consistent with findings by Allen et al. (1998), Zhang et al. (2023), and others. 

The higher performance of the Random Forest (RF) and Support Vector Regression (SVR) methods has the 

capacity to manage complex, nonlinear, and dynamic relationships among several climatic variables (e.g., 

temperature, relative humidity, and solar radiation) across multiple timescales and climatic zones. RF, 

specifically, is an ensemble-based model that constructs numerous decision trees to limit overfitting, and the 

model can handle high-dimensional datasets.In addition, RF allows ranking of feature importance, increasing 

model interpretability and enabling learning of complex, subtle patterns that simpler, less dynamic models may 

miss. SVR, on the other hand, uses a sophisticated kernel function to transform input features into a higher-

dimensional space with an optimization algorithm that minimizes prediction error. SVR also has several well-

documented advantages, including robustness against outliers and multicollinearity. As a system, RF and SVR 

are also complementary. RF provides a model that demonstrates straightforward transparency and generalization 

across datasets, while SVR provides high precision and stability across noise. The models demonstrated their 

ability to provide accurate estimates of monthly ETo throughout both training and, as a consequence, testing 

mode, thus increasing the practical value of building effective and reliable ETo forecasting models and 

estimating ETo. The findings are consistent with previous literature that highlights the advantages of both 

algorithms towards their unique strengths for climate-use modeling (Dos Santos Farias et al., 2020; Gong et 

al., 2021a,b; Kar et al., 2021; Farooque et al., 2022a; Zhang et al., 2023; Kumar & Mishra, 2024a). 

Also, as already mentioned, the Blaney–Criddle (BC) empirical equation performed really well in this study 

because the BC equation is based on two main factors of ET in arid zones: temperature and sunshine (or 

sunshine duration). Even with a simple implementation of the BC equation, the BC equation was supported by 

the observed ETo values, and it showed it can be used in regions where data is sparse. When combining the BC 

equation with RF and SVR, each combination improving predictive functionality indicates that classical models 

and modern machine learning enhance performance even under complex climate variability. The less 

computationally intensive RF and interpretable SVR indicate useful applications for planners or decision-makers 

interested in increasing water-use efficiency. Though the added value of these applications is useful, cut to the 

chase of taking a predictive equation and an ML algorithm that best correlates with the expected regional climate 

context for planning water resources. This is also supported by research by Keith et al. (2020), Yahia et al. 

(2020), Kar et al. (2021), Mobilia (2021), Momen & Abdelatti (2021), Farooque et al. (2022b), Thongkao et 

al. (2022a), Kumar & Mishra (2024b), and El Azhar et al. (2024b). In conclusion, the research not only 

reinforces the effectiveness of using RF and SVR algorithms with the ETo_BC equation in this context, but it 
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adds to the growing number of studies demonstrating the value of hybridizing practical knowledge with modern 

computational tools to create accurate, scalable, climate resilient predictions. 

Finally, applying machine learning techniques for modeling reference Evapotranspiration (ETo) is of most 

importance for developing irrigation strategies and water management, equipping farmers to make better and 

more precise irrigation scheduling decisions, especially in arid regions affected by climate change. Local climate 

data will allow decision-makers to create long-term sustainable water resource management. 

5. Conclusion 

The study examined 38 years' worth of climate data trends. Three formulas, Penman-Monteith (PM), Hargreaves 

(HA), and Blany-Criddle (BC), were used to determine ETo values. The study showed that ETo_PM and 

ETo_BC increased while ETo_HA decreased slightly. The trends of air temperature, relative humidity, wind 

speed, precipitation, and solar radiation were also examined. Temperature increased, as did solar radiation. In 

summary, the study showed that ETo_PM and ETo_BC were the best equations to estimate ETo in this region. 

Wind speed had less influence on ETo than temperature, solar radiation, and relative humidity. The ETo_BC 

method had a stronger association with mean ETo than the other two methods. Based on these meteorological 

conditions, the ETo_BC method would be the method best suited for calculating ETo. The study discovered a 

relationship between the empirical and predicted daily ETo values of the study area when the three methods were 

used. The machine-learning algorithms used in predicting the ETo values of the study area were accurate and 

reliable due to the agreement between the predicated ETo values and the actual ETo values. The study predicted 

ETo values based on climatic data using machine learning algorithms. Support vector regression (SVR), random 

forest (RF), XG-boost, K-nearest neighbor (KNN), decision trees (DT), and linear regression (LR) were among 

the machine learning techniques. These algorithms' performance was assessed using RMSE, MAE, and R2. RF 

and SVR were the most successful algorithms for all three equations, showing superior prediction accuracy in 

both testing and training. Out of all the algorithms that were tested, RF performed the best across all equations, 

especially the BC equation, and had the lowest RMSE and MAE as well as the highest R2 values. Likewise, 

SVR outperformed the other models; it should be noted that both algorithms outperformed the other two 

algorithms in all three equations, particularly in the PM and HA equations. These results imply that, even though 

other models show different levels of prediction accuracy, we advise using the RF and SVR algorithms for ETo 

prediction because they showed the best overall accuracy and consistency, which is particularly useful in more 

complex and variable climates. Therefore, during the 2021 field monitoring insertion, the BC equation yielded 

the best overall predictions and the highest correlation with observed data sets. RF and SVR could be used to 

further validate the BC equation in arid climates. According to the current findings, model accuracy and 

implementation time are also important factors for future applications. While RF and SVR are the best models to 

use, total computational time should also be compared to the available computational capacity. In conclusion, 

this study provides valuable insights for farmers and decision-makers by emphasizing the importance of 

selecting the most accurate ETo equations and machine learning models based on local climate conditions. It 

highlights how choosing the correct ETo equation can improve model performance, optimize irrigation 

scheduling, and manage water resources more sustainably. Future research should focus on enhancing 

algorithmic parameters to allow for the effective application of these models in diverse environmental contexts, 

further supporting sustainable agricultural practices and efficient water use. 
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