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EFICIT irrigations, combined with biochar, could be an effective solution to aleviate drought 

stress in wheat; thereby enhancing its productivity in arid soils. To test this hypothesis, a 

greenhouse experiment of a randomized complete block design was conducted, comprising two 

factors: (1) two levels of deficit irrigations at 60 and 80% of soil field capacity (designated as FC60 

and FC80, respectively) and (2) three biochar doses, i.e. 0, 5 and 10 g kg-1 (refered to as B0, B5 and 

B10, respectively). Plants grown on a soil irrigated at 100% of the field capacity without biochar 

application served as a reference control treatment. This brought the total number of treatments to 

seven. Results obtained in this study revealed that root biomass increased significantly with deficit 

irrigation; yet wheat shoots and grains decreased considerably. On the other hand, the application of 

biochar, generally enhanced shoot and grain yields while decreasing root growth. This in turn 

augmented both shoo-to-root and grain-to-shoot ratios. In this regard, the highest increase in grain 

yield was observed for B5+FC100, while the highest increase in shoot –to-root ratio was recorded for 

the B10+FC100 treatment. Biochar upgraded the coping strategies of wheat plants under drought stress 

by increasing the osmoregulator proline in shoots, Mn content in roots and Cu concentrations in 

different plant parts, especially at the highest application rate (B10). These two nutrients (Mn and Cu) 

are incorporated into detoxifying enzymes that neutralize superoxide radicals which accumulate under 

abiotic stress. Nevertheless, the high dose of biochar likely immobilized soil nutrients and reduced 

their concentrations in different plant parts. Overall, residual organic matter increased in biochar-

amended soil, and its consequences on soil pH were not significant. This could guarantee sustainable 

crop production in such soils. In conclusion, the combination of deficit irrigation and biochar 

application can be used successfully to increase wheat production in arid soils, while optimizing 

irrigation water use and sustaining soil productivity. 
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1. Introduction 

Rapid population growth has placed increasing pressure on the limited natural resources worldwide  (Emami 

Bistgani et al., 2024), including fresh water, whose availability is insufficient to meet the growing demands (van 

Beek et al., 2011; Wada et al., 2011). This limited access to water is one of the major environmental issues (van 

Beek et al., 2011; Musie and Gonfa, 2023), particularly in arid and semi-arid regions (Nyaupane et al., 2024). 

The agricultural sector consumes about 80% of the total water use or more, making this sector the most 

significantly impacted by drought (Tzanakakis et al., 2020). In the Middle East zone, drought has led to a drop of 

about 50% in crop production (Emami Bistgani et al., 2024). 

Wheat is one of the primary cereal crops in daily human diet worldwide (Lalarukh et al., 2022a; Farooq et al., 

2023; Nyaupane et al., 2024; Parveen et al., 2024). It is considered a key pillar of global food security (Slafer et 

al., 2021). In Egypt, wheat is primary subsidized in the form of baladi bread; however this country remains 

largest wheat importer worldwide (Abdalla et al., 2023; Farid et al., 2023 a &b). Egypt imports about 8.3 million 

tons of wheat annually (Ewaid et al., 2020). Despite this, wheat can be grown successfully on the sandy soils of 

this country (Dawood et al., 2020; El-Metwally et al., 2025), which account for nearly 90% of the country’s land 

area (Niel, 2021). Plants cultivated on such soils are often susceptible to drought stress (Aboelsoud and Ahmed, 
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2020). Even in the Nile delta region, soils are vulnerable to the climatic changes (Zhao et al., 2021) and may 

face severe water scarcity (Yassen et al., 2020). 

To cope with drought stress, wheat induces several adaptive changes at the morphological, biochemical and 

physiological changes (Nyaupane et al., 2024), often resulting in a drop in crop productivity(Tahoun et al., 

2022). Maybe, biochar mitigate drought conditions (Lalarukh et al., 2022b). Biochar is produced through the 

pyrolysis of organic residues under limited aeration conditions (Abdelhafez et al., 2014; Mohamed et al., 2018; 

Abdelhafez et al., 2021; Tolba et al., 2021; Asaad et al., 2022). It is characterized by the presence of hydrophilic 

functional groups, which increase water moisture retention (Chai et al., 2024). This property can increase soil-

crop productivity (Farid et al., 2022; Khalil et al., 2023; Zhang et al., 2023; Mohamed et al., 2024; Abuzaid et 

al., 2025), while optimizing irrigation water use  (Bassouny and Abbas, 2019; Baiamonte et al., 2020). 

To lessen losses in crop productivity, deficit irrigation could be an effective strategy (Saad et al., 2023). In this 

approach, crops are irrigated with amounts of water below their full requirements (Ali et al., 2007). Additionally, 

soils can be ammended with organic additives such as biochar to increase their water holding capacity thereon 

(Bassouny and Abbas, 2019). The current study; therefore, aims to evaluate the feasibility of combining these 

two methods -deficit irrigation with 60 and 80% of soil field capacity (FC) and biochar application at two rates 

(5 and 10 g kg
-1

)- to alleviate drought stress in wheat plants. Plants grown on a soil irrigated with 100% of the 

field capacity without biochar application served as the reference control. In this study, soil chemical 

characteristics (soil pH, EC and organic matter content) were analyzed along with plant growth parameters, 

yield, morpho-physiological responses and biochemical changes (such as proline in shoots and concentrations of 

K, Mn, Zn and Cu in plant tissues.  

Specifically, we anticipate that deficit irigations would raise proline content in wheat shoots, while significantly 

reducing plant growth and productivty (hypothesis I). However, the application of biochar could mitigate the 

negative effects of drought on wheat plants and enhance productivity (hypothesis II). In particular, K, Mn, Cu 

and Zn-supplied by biochars- play important roles as osmoregulators and compounds of detoxifying enzymes 

that neutralize superoxide radicals; thereby improve plant capability to cope with drought (hypothesis III). 

Finally, biochar amendment improves soil chemical characteritics, ensuring the sustainability of agricultural land 

use (hypothesis IV).  

2. Materials and methods 

2.1. Materials of study 

2.1.1. Soils of study 

Soil samples were collected from the topsoil layer (0-30 cm depth) of the experimental farm at the Faculty of 

Agriculture, Benha University (Egypt). These samples were thoroughly mixed together, air dried, crushed, 

sieved and analysed for their chemical and physical properties according to Sparks et al. (2020) and Klute 

(1986), respectively. 

Table 1. Soil chemical and physical properties. 

Character Soil 

pH 

Soil EC 

(dS m-1) 

CaCO3 

content  

(g kg-1) 

Organic 

matter  

(g kg-1) 

Field 

capacity 

(%) 

Particle size distribution (%) 

Fine 

sand 

Coarse 

sand 

Silt clay Textural 

class 

Value 7.97 1.49 17.31 14.23 32.00 1.05 1.30 19.25 46.72 Clay  

*Soil pH was determined in soil:water (1:2.5) suspension, while EC was determined in soil paste extract. 

2.1.2. Biochar production 

Maize stover was used as a feedstock for production of biochar. These residues were oven-dried at 65°C 

overnight, and then pyrolyzed in a muffle furnace (Magma Term Laboratory Furnace- Model SNOL 8,2/1100) at 

550°C for 2 h under limited oxygen conditions. E resulting biochar was alkaline, with a pH of 8.57, a salinity of 

13.28 dS m
-1

, and contained 8.02% C, 0.52% N, 0.75% H, 5.82% O, and 0.33% S. Further characteristics of 

biochar were conducted at the Atomic Energy Authority, Cairo, Egypt as follows:  

(1) Scanning electron microscopy (SEM) using a JEOLJSM-5400scanning microscope (Japan) 

(2) X-ray diffraction analysis using Philips PW 1730 powder X-ray diffractometer 

(3) Fourier transform infrared spectroscopy (FTIR) analysis via Thermo Scientific-Nicolet iS10 over the 

range 400-4000 cm
-1

  

(4) The surface charge (zeta potential) of biochar measured using Zeta Sizer Advance Series (Japan), for 

particles within the range of 0.3 -10 micrometre. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/water-scarcity
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2.2. Methods of study 

Twenty-one plastic pots ( 25 cm diameter ×19 cm depth) were filled with about 4 kg of the studied soil. Each pot 

was germinated with 10 seeds of wheat (Giza 171) and fertilized with the recommended doses of N and P 

fertilizers, i.e. 75.6g urea (46%) per kg soil (≈302 g N per pot) and 31.5 g calcium super phosphate(15.6 % P2O5 

per kg soil (≈126 g P2O5 per pot). The experimental treatments (3 replicates each) were arranged in a randomized 

complete block design comprising:  

1)No biochar + 100% of FC (T1, Conrol:B0+FC100) 

2) 5 g kg
-1

 biochar + 60% of FC (T2, B5+FC60) 

3) 5 g kg
-1

 biochar + 80% of FC (T3, B5+FC80) 

4) 5 g kg
-1

 biochar + 100% of FC (T4, B5+FC100) 

5) 10 g kg
-1

 biochar + 60% of FC (T5, B10+FC60) 

6) 10 g kg-1 biochar + 80% of FC (T6, B10+FC80)  

7) 10 g kg-1 biochar + 100% of FC (T7, B10+FC100) 

Soil moisture was monitored periodically using aTensiometer (model Theta-θ-Probe ML2x) and maintained at 

the specified levels gravimetrically. At physiological maturity, whole plants were removed from every pot, and 

their heights and numbers per pot were measured. 

2.3. Plant Analyses. 

Roots, shoots and grains of wheat plants were separated, oven dried at 70 °C for 48 h, and then wet-digested 

with perchloric and sulfuric acids on a sandy hot plate at 250 °C according to Cottenie et al. (1982). Potassium in 

plant digest was determined using a flame photometer (model JENWAY PFP7), while Mn, Zn and Cu were 

assessed by ICP-OES (model Ultima-Expert LT). Proline was determined in shoots after 50 days of planting 

according to Bates et al. (1973). 

2.4. Data processing 

Data was subjected to one-way ANOVA and Dunken’s test using SPSS statistical software (version 18). Graphs 

were created using Sigma Plot (version 10). Shoot-to-root ratio was calculated as a ratio between shoot biomass 

to root biomass (Kurepa et al., 2022), while grain-to-shoot ratio was computed as the ratio between grain yield to 

shoot biomass (Farid et al., 2025).   

3. Results  

3.1. Characterization of the used biochar 

The examination of the biochar samples using scanning electron microscopy (SEM) (Fig 1A) shows that non-

acidified biochar possesses high porosity and a large surface area. X-ray diffraction (XRD) analysis (Fig 1B) 

show a gradual increase in intensity up to around 6° 2-theta, suggesting the development of some structural 

orders, followed by significant intensity fluctuations, whose peaks were at approximately 9.7°, 11.74°, 16.84°, 

18.52°, 20.92°, and 26.02°, indicating the presence of crystalline phases within the biochar. Noteably, the high-

intensity peaks near 26.02° and 18.52° are associated with carbonaceous structures, such as graphite-like or 

amorphous carbon, further highlighting the structural complexity and diversity of the biochar (Pariyar et al.2020; 

Liu et al.2022). It unravels a fascinating combination of both ordered and amorphous phases within the biochar. 

Fourier transform infrared spectroscopy (FTIR) analysis (Fig. 1C) revealed a broad peak at 3400 cm
-1

, 

indicating hydroxyl groups which may increase biochar’s capability to retain soil moisture and nutrients. 

Additional peaks at 2956, 1623, 1346 and 1022 cm
-1

 correspond to “C–H stretching vibrations”, “C=C stretching 

in aromatic rings”, “C–O / C–H bending” and “C–O stretching in ether or ester linkages”, respectively. This 

biochar exhibited a zeta potential of 14.6 mV (Fig 1D), indicating moderate colloidal stability and a relatively 

low surface charge. 



522 IBRAHIM MOHAMED  et al. 

 

Egypt. J. Soil Sci. 65, No. 1 (2025) 

 
 

 

 

Fig. 1. Scanning Electron Microscopy (SEM, A) and X-ray diffraction analysis (XRD, B), FTIR spectrum 

(C) and zeta potential analyses (D) of the used biochar. 

3.2. Effect of biochar application on growth parameters of plants under drought stress conditions 

Plants subjected to drought stress exhibited significant increases in root biomass compared to the non-stressed 

ones, as shown in Figure 2A. The highest increases were observed in the soil maintained at 60% of field capacity 

(FC60), followed by 80% FC (FC80) and 100% FC (FC100). In contrast, shoot biomass (Figure 2B) and grain yield 

(Figure 2C) decreased significantly under drought stress conditions.  

The application of biochar enhanced shoot biomass while decreased root growth, leading to a considerable 

increase in shoot/root ratio considerably, particularly with higher biochar application rate (Fig 2D). Also, grain 

yields improved with increasing biochar application rate. The highest shoot–to-root ratio was observed in the 

treatment T7 (B10+FC100), while the variations between the two treatments: T4 (B5+FC100) and T1 (B0+FC100) were 

statistically insignificant.  

The effects of the applied treatments on the number of plants per pot (Fig 2E) were somewhat comparable to 

their impacts on shoot biomasses. Nevertheless, there were no significant disparities among treatments in terms 

of  plant height (Fig 2F). 
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Fig. 2. Wheat growth parameters (means± standard deviations) as affected by deficit irrigations and 

biochar application levels. 

Note: T1: No biochar + 100% of FC (Conrol:B0+FC100), T2: 5 g kg
-1

 biochar + 60% of FC (B5+FC60), T3: 5 g kg
-1

 

biochar + 80% of FC (B5+FC80), T4: 5 g kg
-1

 biochar + 100% of FC (B5+FC100), T5: 10 g kg
-1

 biochar + 60% of 

FC (B10+FC60), T6: 10 g kg-1 biochar + 80% of FC (B10+FC80) and T7: 10 g kg-1 biochar + 100% of FC (T7, 

B10+FC100). Treatments assigned the same Duncan’s letters showed no significant variations. 

3.2. Effect of biochar application on proline content in wheat shoots and grain-to-straw ratio 

The results presented in Fig 3B show the effects of the studied treatments on the grain-to-straw ratio. Since, high 

grain productivity is a logic outcome of increased plant shoots; thus, no significant differences could be deduced 

in this ratio among many treatments: T1 (B0+FC100), T4 (B5+FC100)and T7 (B10+FC100). However, the application 

of biochar notably augmented this ratio, especially in plants amended with 5 g kg
-1

, with the highest increases 

observed in plants irrigated with FC80.  

Regarding proline content in plants (Fig 3 A), this osmoregulator maintains the osmotic balance within plant 

cells; accordingly a significant increase was found in proline concentration was found in shoots of drought 

stressed plants. The highest concentrations were observed in T2 (B5+FC60), followed by T3 (B5+FC80), then T5 

(B10+FC60), and T6 (B10+FC80). For non-stressed plants that were irrigated at FC100: (T1 , B0), (T4, B5), and T7, 

B10), no significant differences in proline contents were found among their shoots. 
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Fig. 3. Proline content in shoots (A) and grain/shoot ratio (B) (means± standard deviations) as affected by 

deficit irrigations and biochar application levels. 

Note: T1: Conrol:B0+FC100, T2: B5+FC60, T3: B5+FC80, T4: B5+FC100, T5: B10+FC60, T6: B10+FC80 and T7: T7, 

B10+FC100. Treatments assigned the same Duncan’s letters showed no significant variations, 

3.3. Effect of biochar application on nutrient concentrations in different plant parts 

This section considers the effects of deficit irrigations and biochar applications on accumulation of potassium 

(K), manganese (Mn), zinc (Zn), and copper (Cu) in different wheat parts (Fig 4). Concentrations of K did not 

vary significantly in wheat roots among studied treatments, but this concentration decreased in plant shoots 

treated with biochar. Significant changes in K levels were also observed in the wheat grains, where the highest 

concentrations were found in treatments that received biochar at a rate of 10 g kg
-1

. These concentrations 

increased further with higher soil moisture content.  

In case of Mn, application of biochar significantly raised its concentration in wheat roots, shoots and grains. The 

highest increases were found in plants that received 5 g kg
-1

 biochar, especially with increasing soil moisture 

content. Although, Mn concentrations in T5(B10+FC60), T6 (B10+FC80) and T7 (B10+FC100), were significantly 

higher than the control, they were lower than those in plants that received 5 g kg
-1

 biochar. Generally, Mn 

concentrations followed the order of  FC60> FC80 >FC100. Notably, Mn concentrations were much higher in roots 

compared to shoots or grains. 

Concerning zinc (Zn) and copper (Cu), these two essential elements were high in the control plants (no biochar). 

Their levels decreased in plants amended with 5 g kg
-1

 biochar, probably due to the dilution effect on plants, but 

increased at the higher biochar doses (10 g kg
-1

). Soil moisture significantly influenced the absorption of Zn and 

Cu from the soil, with concentrations following FC100> FC80 > FC60 and also, these two nutrients increased in 

wheat grains with higher biochar application rates. 
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Fig. 4. Distribution of K (A), Mn (B), Zn (C) and u (D) among different wheat parts as affected by deficit 

irrigations and biochar application levels. 

Note: T1: Conrol:B0+FC100, T2: B5+FC60, T3: B5+FC80, T4: B5+FC100, T5: B10+FC60, T6: B10+FC80 and T7: T7, 

B10+FC100. Treatments assigned the same Duncan’s letters showed no significant variations. 

3.4. Effect of biochar application on soil chemical characteristics after plant harvest 

Application of biochar significantly raised soil salinity (Fig 5A), with the most pronounced increases observed in 

the soil that received either FC60 or FC100. In contrast, the effect was less significant in the soil that received 

FC80.  On the other hand, these additions had no significant effects on soil pH (Fig 5B) but increased soil organic 

matter by the end of the growing season. The highest increases in SOM were found in the soil that received the 

highest application rate of biochar (Fig 5C). Notably, treatment T2 (B5+FC60) showed comparable organic matter 

content to the control, suggesting high degradation of biochar at this low rate in such a soil; thus the build-up of 

organic matter was low. 
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Fig. 5. Soil EC (A) , pH (B) and organic matter content (C) as affected by deficit irrigations and biochar  

application levels.  

Note: T1: Conrol:B0+FC100, T2: B5+FC60, T3: B5+FC80, T4: B5+FC100, T5: B10+FC60, T6: B10+FC80 and T7: T7, 

B10+FC100. Treatments assigned the same Duncan’s letters showed no significant variations. 

3.5. Correlations among proline content, nutrient concentrations within different wheat parts and plant 

growth parameters  

Root biomasses were significantly and negatively correlated with shoot and grain biomasses; while being 

positively correlated with both soil organic matter and proline content in shoots. In particular, organic matter 

(SOM) enriched soils with nutrients during its degradation; thus Mn, Zn and Cu concentrations in wheat roots 

were correlated positively with SOM content. This was probably the reason beyond the significant increases that 

took place in root biomasses which were significantly correlated with concentrations of K, Zn and Cu in roots. 

On the contrary, shoot biomasses and grain yields were correlated significantly and negatively with proline 

content in shoots. It's worth noting that Mn concentrations in roots were correlated significantly and negatively 

with shoot biomasses, while Mn content in shoots was negatively correlated with the grain yield.  Additionally, 

the grain yield was positively correlated with K and Cu concentrations in shoots. 
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Table 2. Correlations between wheat growth parameters as affected by proline content in straw and distribution of K, Mn, Zn and Cu within different plant parts. 

  

  

Organic matter (SOM) 

Plant biomass 

Proline 

K-content Mn-content Zn content Cu content 

  root shoot grain root shoot grain root shoot grain root shoot grain root shoot grain 

 SOM  -0.434* -0.172 0.209 -0.253 0.304 -0.066 0.655** 0.485* 0.566** 0.644** 0.615** -0.173 0.779** 0.575** 0.168 0.314 

Plant biomass 

root   -0.483* -0.569** 0.971** -0.445* -0.384 0.626** 0.033 -0.032 0.019 -0.814** -0.135 0.245 -0.370 -0.863** 0.329 

shoot    0.298 -0.578** 0.693** 0.688** 0.294 -0.589** -0.257 -0.629** 0.349 0.343 -0.444* -0.042 0.819** -0.668** 

grain     -0.461* 0.465* 0.606** 0.354 0.137 -0.589** 0.137 0.262 0.294 -0.101 -0.094 0.521* -0.069 

 Proline      -0.427 -0.363 -0.509* 0.216 -0.005 0.151 -0.775** -0.122 -0.133 -0.269 -0.891** 0.416 

K-content 

root       0.578** 0.312 -0.289 -0.099 -0.286 0.289 0.371 -0.141 -0.073 0.565** -0.297 

shoot        0.140 -0.252 -0.612** -0.489* 0.111 0.673** -0.579** -0.045 0.546* -0.504* 

grain         0.444* 0.378 0.371 0.672** 0.022 0.449* 0.737** 0.627** -0.278 

Mn-content 

root          0.300 0.684** -0.047 0.161 0.418 0.635** -0.276 0.165 

shoot           0.437* 0.407 -0.364 0.750** 0.636** -0.088 0.206 

grain            0.316 -0.483* 0.841** 0.380 -0.219 0.726** 

Zn content 

root             -0.274 0.609** 0.498* 0.736** 0.027 

shoot              -0.625** 0.190 0.181 -0.642** 

grain               0.472* -0.023 0.609** 

Cu content 

root                0.264 -0.223 

shoot                 -0.524* 

grain                  

 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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4. Discussion  

4.1. Impacts of drought stress on wheat growth and productivity 

Drought stress led to significant increases in proline content within wheat shoots. This osmoregulator 

accumulates in higher concentrations in tissues of drought-stressed plants (Du et al., 2023; Abd El-Hady et al., 

2025; Ibrahim et al., 2025; Salama et al., 2025) to increase cell osmosis and become capable of absorbing more 

water (Hong-Bo et al., 2006; Hosseinifard et al., 2022). This biochemical mechanism increases plant tolerance to 

drought stress (Nyaupane et al., 2024).  

Also, drought stimulated root growth (Ali et al., 2020) to explore new area rich in nutrients (Wang et al., 2016) 

and to search for water (hydrotropism) (Kang et al., 2022). On the other hand, the increased biosynthesis of 

proline lessened the availability of metabolites essential for plant growth and productivity, leading to significant 

decreases in shoot and grain yields. Consequently, the shoot-to-root ratio decreased substantially. Proline also 

mediated stomatal closure to minimize transpiration from plants (Muhammad Aslam et al., 2022). Similar results 

were reported by Nyaupane et al. (2024) who observed significant reductions in the shoot-to-roo ratio and wheat 

grain yield under drought conditions. Thus, the first hypothesis is validated. 

4.2. Biochar as a solution to cope with drought stress. 

Application of biochar alleviated this stress, especially when at the higher rate, resulting in notable 

improvements in shoot dry weight, shoot-to-root ratio, and grain yield. Remarkably, the increase in grain yield 

surpassed that of the non-stressed plants without biochar (B0+FC100). These results align with several studies 

(Mansour et al., 2019; Zulfiqar et al., 2022; Boudjabi et al., 2023; Farid et al., 2025). Probably, biochar 

mitigated drought effects by increasing soil moisture retention, and improving soil fertility (Haider et al., 2020; 

Abdel-Salam et al., 2025). Also, biochar stimulated the activities of helpful microorganisms that promote plant 

growth and productivity (Zaheer et al., 2021).  

Though biochar did not significantly affect plant heights, it boosted the number of plants per pot, with the 

highest increase observed in the “B10+FC100” treatment. Interestingly, biochar had no significant impact on 

proline content, as the lowest proline levels were found in plants irrigated with FC100 regardless of biochar 

application rate.  

The grain/straw ratio was generally low in the non-amended control soil, and remained low in soils that received 

5 g kg
-1

 biochar under FC60. This suggests that stressed plants may shorten vegetative growth periods to cope 

with drought (Oguz et al., 2022). Increases in the grain/straw ratio were only noticed in biochar-amended plants 

with higher soil moisture (FC80 and FC100 ), especially at the 5 g kg
-1 

biochar rate. This is because of the high 

ability of biochar to retain soil moisture that is needed for proper plant growth (Bassouny and Abbas, 2019) and 

provides essential nutrients (Elshony et al., 2019), growth hormones and other stimulating growth substances 

(Farhangi-Abriz and Torabian, 2018). Moreover, biochar can suppress plant pathogens (Poveda et al., 2021).  

However, a higher biochar dose, i.e. 10 g kg
-1

 partially immobilized some nutrients, hindering plant growth and 

transition from vegetative to reproductive stages (Kocsis et al., 2020). Biochar also stimulated soil biota activity 

(Kocsis et al., 2020), increasing biological immobilization processes of many soil nutrients (Bandara et al., 

2020). These results support the 2
nd

 hypothesis. 

4.3. Nutrient distribution in different plant parts. 

Distribution of four nutrients (K, Mn, Zn and Cu) within different plant parts were evaluated in this study. In 

case of K, biochar application raised substantially K concentrations, especially in shoots, enhancing shoot and 

grain biomasses.  Its mode of action in alleviating drought stress is probably through its osmotic adjustment role, 

sustaining stomatal conductance (Egilla et al., 2005), and activation of many enzymes (Ahmad et al., 2018). This 

nutrient also increases carbohydrate metabolism in plants (Zahoor et al., 2017) 

Manganese, zinc, and copper also play crucial roles in activation of detoxifying enzymes that target superoxide 

radicals; consequently, accumulating in plant cells under abiotic stresses (Tavanti et al., 2021; Carmo de 

Carvalho e Martins et al., 2022; Zhou et al., 2022). Biochar significantly increased Mn levels in roots, shoots, 

and grains, with the highest accumulation in roots, where Mn-SOD (a general isozyme) is prevalent (Saed-

Moucheshi et al., 2021).  Generally, Mn concentrations were highest in FC60-irrigated plants, then FC80 and 

finally FC100.  

Concenring Zn and Cu, these nutrients were found high in the non-amended control plants while decreased in 

biochar amended ones, especially at 5 g kg
-1

. This dilution effect was likely due to increased plant dry weight 

(Wan et al. 2023). It is worth noting that Cu/Zn-SOD -a genotype specific isozyme (Saed-Moucheshi et al., 

2021) - raised radical oxygen scavenging system (Tavanti et al., 2021). Higher biochar dose of could partially 

immobilize these nutrients in soil (Wang et al., 2021); hence decrease their uptake and concentrations within 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/water-holding-capacity
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/carbohydrate-metabolism


 BIOCHAR AS A POTENTIAL STRATEGY FOR ENHANCING WHEAT PRODUCTION IN ARID SOILS ... 529 

Egypt. J. Soil Sci. 65, No. 1 (2025) 

different plant parts (Wang et al., 2021). Mobility of these two nutrients in soil moisture is relatively high (Wang 

et al., 2021), explaining their higher concentrations in FC100 treatments compared to FC80 and FC60 . The above 

results supported the 3
rd

 hypothesis. 

4.4. Effects of biochar on some soil properties (soil organic matter, pH and EC) 

Application of biochar raised significantly soil EC and organic matter content by reducing mineralization (Liu et 

al., 2022). The most noticeable changes in soil EC occurred with higher biochar doses. However, soil pH was 

not significantly impacted by these additional organics. It's possible that the alkaline effects of biochar are 

temporary and only noticeable shortly after it is added to the soil (Chen et al., 2021). Over time, non-alkaline 

highly stable aromatic carbon dominated, which does not significantly alter soil pH (Patra et al., 2021). Biochar 

also acted as a pH buffer (Arwenyo et al., 2023). Moreover, it enriched soil with nutrients and enhanced their 

uptake and bioaccumulation in roots, specifically Mn, Zn and Cu. This explains the significant correlation 

between root biomass and the concentrations of K, Zn, and Cu in roots. Accordingly, these results validate the 4
th

 

hypothesis. 

5. Conclusion and Future Prospective 

Drought stress severely hampers wheat growth and productivity. To cope with this stress, plants stimulated 

further root growth in search of water and nutrients. Additionally, they exhibited high proline levels content in 

plant tissues. However, the application of biochar offered a promising solution to counteract these negative 

effects  particularly at 5 g kg⁻¹ under deficit irrigation (80% field capacity), provides a viable solution, while 

rationalizing irrigation water and sustaining soil productivity. Biochar improves drought stress by increasing 

levels of the proline, increasing Mn and Cu contents within plant parts for detoxifying processes of radical free 

oxygen, which is produced under abiotic stress. Besides, it increased residual organic matter by the end of the 

growing season. These improvements led to better plant growth and productivity, making biochar a valuable tool 

for sustainable wheat cultivation in arid regions. These findings collectively validate the hypotheses of the study. 

Nevertheless, further investigation into plant nutrition under drought conditions is essential to maximize crop 

resilience and yield.  
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