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USTAINABLE food production is the main challenge in today’s world. Around one third of the 

food consumption worldwide is wasted; instead, these litters could be pyrolyzed forming biochar 

that can be applied to restore soil fertility. Yet, both the Egyptian soils and biochar are basic. The 

current study aims at investigating to what extent “elemental-S+ biochar” and “sulfuric-acid-modified 

biochar (SMBC)” can improve the nutritional status of maize plants and boost their growth 

performance under the arid conditions versus normal biochar. A non-amended control treatment was 

included for data comparison. Acidified and non-acidified biochars were produced from potato-straw 

then incorporated in a pot experiment, considering two factors: (1) acidified and non-acidified 

biochars (all applied at 10g kg-1 soil) and (3) elemental-sulfur applied at three rates: 0, 1 and 2 g S kg-1. 

All pots received compost as a source of nutrients Maize seeds were then planted in all pots for 60 

days. The dry-weights of maize roots and shoots improved significantly for only SAMB treatment 

because this treatment decreased soil pH, consequently increased the availability of Olsen-P, S, and 

AB-DTPA-Zn, while reduced AB-DTPA-Fe and K-available content. Nevertheless, all biochars 

increased nutrient uptake by plants, with superiority for SMBC. Moreover, SMBC stimulated the 

transfer of K, Fe and Zn from root-to-shoot. Likewise, S-applications decreased soil pH. This, in turn, 

increased AB-DTPA extractable- amounts of Fe and Zn when being applied at the lower dose; yet 

exhibited no effect on Olsen-P and K availability. Its main mechanism was via increasing nutrient 

uptake by plants which boosted shoots and roots biomasses. Overall, the increases in plant biomasses 

were significantly correlated with increasing nutrient uptake by plants. Results also revealed that 

SMBC exhibited better shoot growth and higher chlorophyll content than the dual application of 

“non-acidified biochar+S”. In spite of that, the latter treatment exhibited higher contents of K and Zn 

(but not Fe) in shoots. In conclusion, application of elemental S can increase the efficiency of applied 

biochar to increase soil productivity; in spite of that, acidified biochar is more preferable as a fertilizer 

in arid soils.  
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1. Introduction 

Sustainability in food production is the main challenge of today’s world (Malik et al., 2022) because of the 

continuous population growth worldwide, especially in developing countries (van Hoof et al., 2019). Around one 

third of the food consumption is wasted and this brings further economic costs (Morone et al., 2019). Instead, 

organic wastes should be quantified and recycled appropriately (Ojha et al., 2020). For example, farm residues 

may undergo pyrolysis in absence of oxygen or under limited oxygen conditions (Bassouny and Abbas, 2019; 

Tolba et al., 2021; Farid et al., 2022) forming a black product rich in carbon called the black diamond 

(Abdelhafez et al., 2017). This cost-effective product is rich in nutrients (Elshony et al., 2019) which can 

promote nutrient absorption by plants (Hou et al., 2022); hence enhance plant growth performance (Hou et al., 

2022) and productivity (Chew et al., 2022). In the future, this additive (biochar) may substitute totally chemical 

fertilizers (Hou et al., 2022).  

Many reports confirmed the positive impacts of biochar application on soil characteristics (Devereux et al., 

2012; Burrell et al., 2016)  which are mainly attributed to its high surface area, porosity, and surface charges 

(Hossain et al., 2020; Asaad et al., 2022). It persists longer in soil versus other organic additives such as compost 

(Farid et al., 2022) and therefore restore soil health via stimulating beneficial microorganisms (Agarwal et al., 
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2022; Haider et al., 2022). This consequently support plant growth and development (Agarwal et al., 2022; Ma 

et al., 2022; Hegab et al., 2024). In particular, biochar can successfully be used for boosting maize productivity 

(Bassouny and Abbas, 2019; Sun et al., 2022). 

Maize is an important cereal crop in Egypt (Abdelraof et al., 2023), coming after wheat and rice (Ali and 

Abdelaal, 2020). It is incorporated in manufacturing of up to 70% of the dry feed (Mekawy and Gmail, 2022). 

Nevertheless, the majority of it local consumption in Egypt depends on exports (Eliw et al., 2022). Since the 

beginning of the Russia-Ukraine War, maize prices have increased by 35%  (Ben Hassen and El Bilali, 2022). 

Thus, there is an actual need to increase its local production. 

The majority of newly reclaimed areas that can be used for maize cropping in Egypt are sandy textured ones of 

low organic matter and nutrient contents  (El-Nagar and Sary, 2021). These soils also exhibit low capabilities to 

retain nutrients within the top soil (Niel, 2021). Maybe, the application of biochar improves nutrient retention 

capacity in such soils (Hossain et al., 2020; Farid et al., 2021); yet Egyptian soils are mainly basic (Abd El-

Mageed et al., 2021). Thus, sole application of biochars may; therefore, have undesirable effects on the 

agricultural productivity. Its alkaline nature (Chen et al., 2019; Kocsis et al., 2022); could rise the pH of soil and 

minimize nutrient availability (Hossain et al., 2020). Alternatively, application of acidified biochar (Abd El-

Mageed et al., 2021)  or using an acidifying agents such as elemental sulfur + biochar may further enhance plant 

growth (Bashir et al., 2020).  

Modifying biochar with acids may additionally increase its specific surface area (Murtaza et al., 2022), 

especially its content of oxygen-containing-functional groups such as the carboxyl ones (Huang et al., 2021) to 

retain more soil nutrients (Asaad et al., 2022). This is a good point deemed to improve the characteristics of 

these soils. Nevertheless, acid modified biochar becomes easily biodegradable in soil versus non acidified 

biochars (El-Sharkawy et al., 2022; Abuzaid et al., 2025); therefore, more nutrients are thought to be released 

during its decomposition which in turn are subjected to be lost via leaching. Otherwise, the usage of elemental 

sulfur may undergo oxidation in soil; hence decrease soil pH (Mattiello et al., 2017), while increase the pH 

dependent charge (Choppala et al., 2018) of the organic functional groups to adsorb and retain more soil 

nutrients (Fidel et al., 2018). There is a lack of experimental evidence to confirm the integral effect of elemental 

sulfur and biochar for boosting productivity of crops within the arid poor fertile soils. 

The current study aims at investigating to what extent can biochar+sulphur  (relatively cheap additives) improve 

the nutritional status of maize plants and boost their growth performance under arid conditions versus application 

of either biochar or even the modified biochar with sulfuric acid (a rather expensive additive). This aim was 

intended to be conducted under greenhouse conditions to monitor precisely variations in nutrient availability, 

specifically P, K, Fe and Zn, their distribution within plant parts and outcomes on plant growth and productivity. 

This goal is not so far investigated. Specifically, we anticipate that sulfuric acid modified biochar could 

effectively increase nutrient uptake by plants and this in turn increase plant growth and productivity versus 

application of non-acidified biochar (hypothesis 1). Also, application of elemental sulfur could ameliorate the 

negative effects of biochar application on enhancing plant growth and productivity (hypothesis 2). The effects of 

the relatively low cost  additives (biochar+ elemental sulfur) on plant nutritional status and growth performance 

could be competent or even superior to the effect of the relatively expensive sulfuric acid modified biochar 

(hypothesis 3).  

This study contributes to increase food security via enhancing the productivity of maize in dry, nutrient-deficient 

soils through sustainable soil improvement methods,. Thus, this research is closely connected to the United 

Nations Sustainable Development Goals (SDGs), specifically focusing on SDG 2 (Zero Hunger) and SDG 15 

(Life on Land). Furthermore, the incorporation of biochar derived from organic waste addresses SDG 12 

(Responsible Consumption and Production) by converting agricultural waste into a valuable soil supplement, 

thereby decreasing wastes and promoting the circular use of resources. The use of eco-friendly materials and 

techniques, like biochar and elemental sulfur, to restore soil fertility also supports efforts for ecological 

conservation in line with SDG 13 (Climate Action) by improving soil carbon storage and reducing dependence 

on chemical fertilizers. 

2. Materials and methods 

2.1. Materials of study 

Compost was brought from the Compost Production Unit at Faculty of Agriculture (Benha University). Its 

characteristics are presented in supplementary Table 1. A top soil sample (0-30 cm) was collected from Arab 

Agadeer area (31
◦
 16’ 42” E and 30

◦
 21’ N), Qualubia Governorate, Egypt. This samples was air dried, crashed 

and sieved via 2 mm sieve then analyzed for its physicochemical characteristics as outlined by Klute (1986) and 

Sparks et al. (2020). This soil was of loamy sand texture (87.7 % sand, 6.5% silt and 5.8% clay) comprising 6.0 
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g kg
-1

 organic matter and 29.9 g kg
-1 

calcium carbonate. Its salinity is 3.33 dS m
-1

 and the pH was 8.4. Its water 

holding capacity was 26.6%. Maize seeds of cultivar SC-P3444 were obtained from Pioneer International 

Company in Egypt.

 2.2. Preparation of the acidified and non-acidified biochars

Potato straw was collected from the experimental farm at Faculty of Agriculture, Benha University. These 

residues underwent pyrolysis at 450˚ C in a muffle furnace (VULCAN D-550) for 5 h to produce biochar; 

thereafter the product was ground to pass through a 0.18 mm sieve. Half of the pysolyzed product was left 

untreated (BC) while the other half was mixed with sulfuric acid to produce sulfuric acid modified biochar 

(SMBC)  as outlined by Vithanage et al. (2015). Briefly, sulfuric acid (30%) was mixed with biochar at a ratio 

of 20:1 for 4 h, then washed with distilled water 5 times and oven dried at 40°C.

2.3. The green house investigation

A pot experiment, followed a randomized complete block design, was conducted at the greenhouse conditions of 

Soils and Water Department at Faculty of Agriculture, Moshtohor, Benha university, Qalyoubia Governorate 

(Egypt). This experiment comprised two factors, the first one was the type of biochar (no biochar, non-acidified 

biochar (BR) and sulfuric acid modified biochar (SMBC) (all biochar additives were applied at a rate of 10g kg
-

1
) while the second factor was elemental sulfur which was applied at three different doses (0, 1 and 2 g kg

-1
). All

treatments were replicated three times.

To set up this experiment, plastic pots (20cm diameter ×17.5cm depth) were washed several times with tap water 

then with distilled water and uniformly packed with soil (equivalent to 5 kg soil mixed with one of the 

abovementioned amendments + 80 g of compost as a source of beneficial biota and nutrients). Soils were then 

moistened (with distilled water) to bring soil moisture at 80% of water holding capacity and left to equilibrate for 

two weeks while maintaining soil moisture gravimetrically at this moisture level. Afterward, 5 maize seeds were 

planted per pot, and after germination, plants were thinned to 3 plants. Soil moisture was kept at 80%of the water 

holding capacity for 60 days (experimental period), then whole plants were removed gently from pots to avoid 

the damage of root hairs and placed on plastic sieves.

Plant materials were washed thoroughly with tap water then with distilled water and oven dried for 72h at 60-70˚ 

C thereafter weights of the dried materials were determined. Moreover, soil samples were collected from the 

rhizosphere of each pot and air dried for available nutrient analyses.

2.4. Soil and plant analyses

Soil pH was determined in 1:2.5 soil water suspension using a pH meter  (Jenco  6173), Available K was 

extracted by ammonium acetate method according to Sparks et al. (2020) then measured by flame photometer 

(Elico CL 378). Available P was extracted by Olsen then determined by Spectrophotyometer (Spectronic  20D) 

following the molybdenum blue-ascorbic acid method while the available contents of Fe and Zn were extracted 

by AB-DTPA according to Soltanpour (1985) then determined by Atomic absorption (Perkin Elmer 

Precisely Analysis t400).

Chlorophyll content in maize shoots was determined by Chlorophyll Content meter (Opti-Sciences CCM-200) 

the day before plant harvest (59 days after seedling). The oven dried plant materials were wet digested using a 

mixture of sulfuric (H2SO4) and perchloric (HClO4) acids at a rate of 4:1, according to Gotteni et al. (1982). K 

and P contents in plant digests were measured via flame photometer and Spectrophotometer, respectively. Fe and 

Zn were determined by Atomic absorption. All the chemicals, used in this study, were of analytical grade.

 Data processing

The obtained data were subjected to two- way ANOVA and Dunken’s text via SPSS ver 18. Figures were plotted 

via Sigma plot 10.

3. Results

3.1. Effect of biochars and S on plant dry weights

Dry weights of maize shoots and not roots increased significantly owing to amending the investigated sandy soil 

with acidified biochar (SMBC) (Fig 1). In contrast, the non-acidified biochar recorded no significant increases in 

shoot biomass while decreased root biomass. Likewise, application of S boosted root and shoot dry weights; yet 

such increases were only significant with the application of 2 g S kg
-1

.

 

https://www.google.com/search?sxsrf=ALiCzsaIp-o2kc7mVB2nBEz6iFsrw4eAOg:1666509890458&q=Perkin+Elmer+Precisely+Analysis+t400&spell=1&sa=X&ved=2ahUKEwji7qOQ6fX6AhXhQ_EDHZ2gDDoQBSgAegQIBhAB
https://www.google.com/search?sxsrf=ALiCzsaIp-o2kc7mVB2nBEz6iFsrw4eAOg:1666509890458&q=Perkin+Elmer+Precisely+Analysis+t400&spell=1&sa=X&ved=2ahUKEwji7qOQ6fX6AhXhQ_EDHZ2gDDoQBSgAegQIBhAB
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Fig. 1. Effect of biochars and S applications at different doses on plant chlorophyll content. Abbreviations: 

BC: Non-acidified biochar, SMBC: Sulfuric acid modified biochar. Similar letters indicate no 

significant variations among treatments.

Concerning interactions between biochar and elemental-S, the highest increases were recorded for SMBC, 

irrespective of the rate of S application (1 or 2 g kg
-1

 soil). Also, treatment that did not receive biochar while 

received 2 g S kg
-1

 recorded comparable increases in shoot dry weights. On the other hand, no significant 

interactions were recorded for the  application of both biochar anf S on root dry weights.

3.2. Effect of biochars and S on plant Chlorophyll

Chlorophyll content also augmented significantly in plant shoots grown on the soil amended with either the 

acidified or non-acidified biochars, yet the variations between these two treatments were almost insignificant 

(Fig. 1). It was noticed that chlorophyll content was almost doubled in plants which were amended with SMBC
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versus the control. On the other hand, S applications did not exhibit significant effects on the chlorophyll content 

in plants. Probably, the impacts of biochar addition on this parameter were more obvious versus those of 

elemental S. Interactions between biochar applications and S reveals that all biochar applications (-/+ S) 

exhibited comparable chlorophyll content to the control, except for “BC+0 g S kg
-1

”, “SMBC+0 g S kg
-1

” and 

“SMBC+ 2 g S kg
-1

” treatments, which recorded higher increases in chlorophyll content in maize shoots. 

3.3. Effect of  biochars and S on soil pH 

Application of acidified biochar decreased significantly soil pH while the non-acidified biochar raised 

significantly soil pH to values exceeding those of the control (Fig 2). Also, S- applications decreased 

significantly soil pH, especially with increasing its dose of application i.e. 2 g S kg
-1

. Regarding the interactions 

between these two factors (biochar and elemental S), it was found that the highest application rate of S in 

presence of either acidified or non-acidified biochars recorded the least pH values. 
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Fig. 2. Effect of biochars and S application rates on soil pH. See footnote Fig. 1. Similar letters indicate no

significant variations among treatments.

 

.3.4. Effect of biochars and S on nutrients availability and concentrations within maize parts 

3.4.1. Effect on K available content in soil and its concentration within plant roots and shoot 

Application of non-acidified biochar significantly raised K-available content in the investigated soil by 1.8 fold, 

while the acidified biochar did not (Fig 3). Nevertheless, all applied biochars successfully upraised K- content in 

both shoots and roots, especially the non-acidified one. Likewise, application of elemental sulfur significantly 

elevated K content within maize shoots, especially with increasing the dose of applied S up to 2 g S kg
-1

 while 

the corresponding contents decreased in roots. Also, elemental S decreased K available content in soil. 

Concerning the interaction between S and biochar, K availability was the highest in all BC applications, 

irrespective of the rate of applied S.  
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Fig. 3. Effect of biochars and S application rates on K available content in soil and its corresponding 

concentrations in both roots and shoots of maize plant. See footnote Fig 1. Similar letters indicate 

no significant variations among treatments. 

 

The highest increases in K content in both roots and shoots of maize plants were also recorded for all BC 

treatments. A point to note is that the BC treatment, that did not receive S, recorded the highest K-content in 

roots, while the ones, that received S  recorded the highest K contents in shoots. This might highlight the 

important role of S in translocation of K within plants. 

 

3.4.2.  Effect on P available content in soil and the corresponding concentrations in plant roots and shoots 

Application of all biochars raised significantly P- concentrations within maize roots (2.8 fold for BC and 3.1 fold 

for SMBC) with no substantial variations between the non-acidified and acidified biochar treatments (Fig 4). 
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Fig. 4. Effect of biochars and S application rates on P-available content in soil and its corresponding 

concentrations in both roots and shoots of maize plant. See footnote Fig 1. Similar letters indicate 

no significant variations among treatments. 

 

On the other hand, no significant variations were detected in P-content in shoots owing to biochars application. 

Concerning  Olsen-P, only SMBC recorded significant increases in its content while the corresponding Olsen-P 

contents due to application of BC was significantly comparable to the control. Sulfur applications did not 

significantly affect the available P-content (Olsen-P) in soil by the end of the experimental period or even its 

concentration within different maize parts. Concerning interactions between biochar+ elemental-S, all treatments 

markedly increased P-Olsen versus the control, with no noticeable variations among these treatments. In maize 

roots, the highest increases were recorded for  “SMBC+0 g S kg
-1

”, “SMBC+1 g S kg
-1

”, “BC+1 g S kg
-1

” and  

“BC+2 g S kg
-1

” treatments, while in shoots, values of P content were almost comparable except for SMBC 

treatment which exhibited a significantly lower value. Probably, such reduction was related to the dilution effect 

of this nutrient within plant tissues.  
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Fig. 5. Effect of biochars and S application rates on Fe-available content in soil and its corresponding 

concentrations in both roots and shoots of maize plant. See footnote Fig 1. Similar letters indicate 

no significant variations among treatments. 

 

3.4.3. Effect on AB-DTPA- extractable Fe and concentrations of Fe within maize roots and shoots 

Application of all biochars did not significantly affect AB-DTPA-extractable Fe in soil (Fig 5). Only the 

acidified biochar decreased Fe contents in roots by approximately 16% while raised this content in shoots by 

1.14 folds. Application of elemental S also raised significantly AB-DTPA extractable-Fe content in soil at its 

low application dose i.e. 1 g kg
-1

, and this consequently elevated its content in both roots and shoots. 

Nevertheless, Fe extractable amount in soil by AB-DTPA and the analogues content within maize roots 

decreased significantly with increasing the rate of S application to 2 g kg
-1

, though these concentrations were still 

comparable with the control results. Remarkably, the highest Fe contents in shoots were recorded for plants that 

received 2 g S kg
-1

. Generally, the interactions between biochar and S were insignificant regarding AB-DTPA 

extractable-Fe content in soil while exhibited significant variations in both roots and shoots. The highest Fe 
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content was found in maize shoots due to application of SMBC+2g S kg
-1

; nevertheless this treatment recorded 

the least Fe content in roots. Maybe, S stimulated Fe translocations to plant shoots. 

 

3.4.4. Effect on AB-DTPA- extractable Zn and Zn concentrations within plant roots and shoots 

Application of acidified biochar raised significantly AB-DTPA-extractable Zn in soil and also elevated Zn 

content in shoots by approximately 10%, while diminished its content in roots by 1.11 fold (Fig 6).  
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Fig. 6. Effect of biochars and S application rates on Zn-available content in soil and its corresponding 

concentrations in both roots and shoots of maize plant See footnote Fig 1. Similar letters indicate no 

significant variations among treatments. 

Referring to the application of non-acidified biochar, this additive recorded no further significant impacts on the 

AB-DTPA extractable Zn versus the control. Also, this additive recorded comparable Zn content in shoots while 

decreased its content in roots. In case of elemental sulfur, its application raised significantly AB-DTPA-

extractable Zn (at its lower application rate i.e. 1 g S kg
-1

) and also upraised its content in maize roots and 

shoots. No further significant increases in Zn content within maize parts were noticed due to the application of 

higher S dose (2 g S kg
-1

).  

Interactions between biochar × S were of further significant effect on AB-DTPA-extractable-Zn and also on Zn 

content within both maize shoots and roots. The highest values of AB-DTPA extractable Zn were found in all 

“BC” treatments and also for the “SMBC+2 g kg
-1

” one, with no significant variations among these treatments. 
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In maize shoots, the highest Zn content were recorded for “BC+2 g S kg
-1

” and “SMBC+2 g kg
-1

” treatments 

with no variations between these two treatments. On the other hand, these two treatments recorded significant 

lower Zn content within maize roots versus the non-amended “zero biochar+zero S” treatment 

3.5. Correlations between root and shoot biomases in relation tp macro- and micro- nutrient uptake 

Table 1 reveals that total dry weights of maize plants were significantly correlated with the uptake values of both 

macro- (K and P) and micro- nutrients (Fe and Zn) (uptake=Σ dry weight of plant parts×concentration of nutrient 

within this tissues).  This relation signifies the positive effect of improving the nutritional status of maize on 

increasing its growth. Results also reveal that the uptake values of all nutrients were negatively correlated with 

the changes that occurred in soil pH, while being positively correlated with each other. Although, chlorophyll 

content in plants was significantly correlated with plant dry weights; yet this parameter was not significantly 

affected by the uptake of the investigated soil macro- and micro- nutrients.  

Table 1. Coefficient of determination “r
2
” values calculated for the relation between maize dry weights, 

nutrient uptake by plants and soil pH . 

 Total dry 

weights 

Leaf 

chlorophyll pH 

P-

uptake 

K-

uptake 

Fe-

uptake 

Zn-

uptake 

Total dry weights        

Leaf chlorophyll 0.382
*
       

pH -0.521
**

 -0.264      

P-uptake 0.317 0.345 -0.642
**

     

K-uptake 0.478
*
 0.111 -0.530

**
 0.660

**
    

Fe-uptake 0.515
**

 0.119 -0.740
**

 0.700
**

 0.584
**

   

Zn-uptake 0.518
**

 0.118 -0.754
**

 0.664
**

 0.512
**

 0.945
**

  

 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

4. Discussion  

4.1. Aplied biochars and maize growth parameters, soil pH, and nutrient availability  

Application of non-acidified biochar was of no significant impacts on either Olsen-P or AB-DTPA extractable –

Zn in soil. Despite being a source of nutrients that were set free upon its degradation (Zhang et al., 2019); yet the 

availability of these nutrients might be affected negatively by its alkaline nature (See supplementary 1). 

Additionally, biochar had an amorphous porous structure which increased its surface area to retained more 

nutrients on its surfaces (Vahedi et al., 2022); thus, biochar application reduce available P (Nelson et al., 2011; 

Bornø et al., 2018) and AB-DTPA-Zn (Hailegnaw et al., 2020). 

On the other hand, mobile organic P-complexes may be formed owing to biocar applications (Chan et al., 2007; 

Wang et al., 2012; Shen et al., 2016; Elshony et al., 2019; Pogorzelski et al., 2020) that raised significantly P- 

uptake and distribution within maize parts. Thus, biochar acted as slow release fertilizers (Lustosa Filho et al., 

2019). On the other hand, this additive did not affect Zn content in shoots while decreased its content in roots.  

 

This probably indicates that biochar boosted formation of soluble complexes with Zn (Karimi et al., 2019) which 

increases its translocation within plants from roots to shoot (Elshony et al., 2019). Our findings agree with the 

results of many researchers which indicate that biochar, in general, reduce the bioavailability of soil Zn in 

contaminated soil (Puga et al., 2015; Rees et al., 2015; Kumar et al., 2018) while contradict those that indicate 

that biochar diminished its translocation to areal plant parts (Puga et al., 2015; Eissa, 2019; Nzediegwu et al., 

2020). In case of Fe, this additive raised its content in roots, while did not affect its content in shoots. Probably, 

increased P content in soil and within plant roots stimulated Fe co-precipitation (Liu et al., 2015) within plant 

roots (Jiang et al., 2009) . 
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Application of acidified biochar decreased significantly soil pH (Peiris et al., 2019) and this consequently raised 

the availability of  some soil nutrients (Dai et al., 2020) such as P, Fe and Zn (except K) beyond those attained 

for either BC or the control. These results agree, to some extent, with those recorded by Sahin et al. (2017) who 

indicate that the application of acid modified biochar raised significantly nutrient availability in a calcareous soil, 

e.g. P, K, Zn and Fe. This consequently upraised the uptake of the studied nutrients by maize plants. Soothar et 

al. (2021) and Khalil et al. (2023) found also that K availability and uptake increased by maize plants when 

being amended with acid modified biochar. Furthermore, Farid et al. (2025) notified the significant increases in 

P and K uptake by wheat plants when being supplied with acid modified biochar under salinity conditions. 

Neverthless, the increases in K uptake owing to the application of acidifed biochar were much lower than the 

corresponding ones found for the non-acidified one. There are two scenarios to explain such reductions. The first 

one is based on the increases of active sites on acidified biochars (Zeng et al., 2022) that could retain more K. 

The second one is related to the increases that occurred in macro- and micro-  cations availability in soil due to 

biochar application (Elshony et al., 2019; Wang et al., 2022) which may antagonize K influx to plant roots.   

A point to note is that the SMBC treatment recorded significant reductions in Fe and Zn contents in roots 

probably due to the dilution effect. Moreover, this additive contained S which may intensify the translocation of 

Fe and Zn from roots-to-shoots (Chorianopoulou et al., 2022; Shah et al., 2022). In this concern, many 

researches confirmed the positive impacts of acidified biochar on increasing uptake of these nutrients by plants, 

e.g. Fe and Zn by maize (Sahin et al., 2017) and Zn by bean, soybean, and maize (Taskin et al., 2019).  

Overall, application of the two types of biochar improved the chlorophyll content in plants; yet only acidified 

biochar enhanced plant growth. These findings agree partially with Libutti et al.(2020), Abdelhafez et al. (2021), 

Farid et al.(2022), Jabbovora et al (2021) who recorded significant increases in plant growth and leaf chlorophyll 

for plants amended with biochar. On the other hand, Zhu et al. (2015) found that application of 10 g rice-straw-

biochar kg
-1

 soil resulted in significant improvements in maize dry weights grown on only one type of studied 

soils while exhibited null or even negative impacts in the other 4 studied soil types. In another study, Ahmed et 

al. (2021) used 2 different types of biochars (greenwaste and corncob biochars) and their acidified forms in 

presence of 100% of the P-requirements and noticed that all treatments exhibited comparable dry weights of 

maize plants at the vegetative growth stage versus the control, except for greenwaste biochar and its acidified 

form as these two treatments decreased considerably plant dry weights. Based on the above results, the first 

hypothesis becomes acceptable. 

4.2. Elemental sulfur and maize growth parameters, soil pH, and nutrient availability  

Application of elemental S reduced significantly soil pH, especially with increasing its rate of application 

because elemental sulfur underwent oxidation in soil and increased soil acidity (Tabak et al., 2020; Lee et al., 

2021). This acidity augmented the availability of the investigated soil nutrients. In this investigation, there were 

negative correlations between soil pH and all nutrient uptake by plants. Maybe, this acidity increased the 

solubility of Ca phosphates minerals in soil (Penn and Camberato, 2019) to set calcium free; hence increased P 

availability in soil (Glaser and Lehr, 2019) to be taken up by plants(Elshony et al., 2019). Also, the availability 

of other soil nutrients, which are needed for proper plant growth, increased with increasing soil acidity (Nosheen 

et al., 2021). For example, sulfur oxidation increased the solubility and reduction of Fe bearing minerals 

(Carvalhais et al., 2011). Moreover, soluble ion pairs of ZnSO4 were produced (Liu and Papangelakis, 2005; 

Wang et al., 2016). The higher dose of applied S reduced significantly Fe availability because S addition also 

increased the availability of P (Carvalhais et al., 2011) which might   precipitate Fe (Kleeberg et al., 2013; 

Wilfert et al., 2015).  

It is worth to mention that significant positive correlations were detected among the uptake of the investigated 

nutrients by maize plants, i.e. P, K, Fe and Zn. Such synergistic effects were previously confirmed by many 

researchers, i.e. P and K (Rietra et al., 2017; Hu et al., 2023), P and Zn (Rietra et al., 2017), P and Fe (Pii et al., 

2015), K and Fe (Pii et al., 2015). Nonetheless, no synergistic or antagonistic effects were recorded between K 

and Zn uptake (Rietra et al., 2017). On the other hand, micro-nutrient availability declined considerably upon 

using high doses of either P (Abd El- Aziz et al., 2020; El-Shabasy et la., 2023; Nath et al., 2024) or K inputs(Li 

et al., 2020).  

Doubtless, sulfur deficiency results in significant reductions in chlorophyll content (Samborska et al., 2019). 

Besides, S increases nutrient availability and uptake by plants (Pourbabaee et al., 2020); and this consequently 

upturns the  net assimilation rate and plant growth (ur Rehman et al., 2013; Singh et al., 2018; Elsherpiny et al.,  

2024);  nevertheless the rate of formation of chlorophyll seemed to be a bit slower (Vavilin et al., 2005) than 

plant growth rate and/or leaf chlorophyll was biosynthesised in sufficient amounts only to meet plant needs 

(Mandal and Dutta, 2020) rather than being excessively produced and accumulated in plant tissues (Hu et al., 

2021; Luo et al., 2023) as a result of increasing nutrient intake. Thus, chlorophyll content was not significantly 

affected by S application rate versus the control. Similar findings indicate that chlorophyll content did not vary 
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significantly in leaves of Spanish plants subjected to different fertigation levels for up to 4 weaks after planting  

(Nkcukankcuka et al., 2021).  

Probably, K availability is less affected by soil pH verses the other investigated nutrients (Tabak et al., 2020); 

yet at lower pH values, sorption of this metal ions on soil components decreased considerably while its 

desorption increased (Neina, 2019). This may explain the increases that took place in K content within plant 

parts owing to S application. Also, this amendment (elemental-S) enhanced the translocation of K from roots to 

shoots, probably as a counter ion via xylem loading and vacuolar storage in plant leaves (Reich et al., 2016). In 

case of Fe and Zn, S applications also increased their translocation from root to shoot. This is because S is 

involved in organic chelators ( such as nicotianamine) which are responsible of Fe transport in both xylem and 

phloem  (Astolfi et al., 2021). Likewise, S is incorporated in the uptake and translocation of Zn within plants 

(Dede and Ozdemir, 2016). 

Dry weights of maize shoots and roots were comparable in case of application of 1 g S kg
-1

 and the higher dose 

i.e. 2 g S kg
-1

. Probably, the higher rate enhanced S uptake by plants via proton coupled co-transporters (Smith et 

al., 2000; Buchner et al., 2004); then rapidly transported to xylem where the majority is reduced(Maathuis, 

2009). Accordingly, toxicity symptoms appears (Karthika et al., 2018; Corpas and Palma, 2020) that 

downgraded plant growth (Palacio et al., 2014). The above results confirm the 2
nd

 hypothesis. 

4.3. Combined effect of biochar and elemental sulfur on maize growth parameters, soil pH, and nutrient 

availability  

Applications of elemental S at a rate of 1 g kg
-1

 soil with either non-acidified biochar or the acidified one raised 

slightly the dry weights of maize shoots and roots; yet the only significant increases were detected in maize 

shoots. Probably, the pot size limited further root elongation and growth. Higher dose of elemental sulphur (2 g 

kg
-1

) did not record further significant impacts on shoot and root dry weights versus the lower one (1 g kg
-1

). 

Overall, SMBC (-/+ S) treatments recorded higher increases in maize biomases versus the ones that received 

normal biochar, even in presence of elemental sulphur at its highest application dose.  

Results obtained herein indicate that acidified biochars effectively reduce soil pH to values exceeding those 

attained for biochar+ elemental S. This result agrees with Khalil et al. (2023). Besides, these additives (BC and 

SMBC) form soluble complexes with soil nutrients to increase their availability (Khalil et al., 2023; Taheri et al., 

2023) and uptake by plants (Farid et al., 2025). Generally, the increases in plant biomasses were positively 

correlated with their uptake of soil nutrients.  

Similar results indicate that the application of S with normal biochar declined soil pH. For example, Al-Rabaiai 

et al. (2024) found that soil pH was 8.05 when amended with biochar solely, then decreased to 7.65 when the 

soil received both S+biochar. Yet, the fast oxidation of elemental S in soil exists only within the first 28 days of 

application; thereafter S oxidation becomes slow (Yang et al., 2010), while soil restore its actual pH via its 

buffering ability (Wang et al., 2015). Thus, a single dose of elemental sulphur might not be deemed appropriate 

as an acidifying agent in soils of high buffering capacity. 

5. Conclusion and Future Prospective  

Sulfuric acid modified biochar exhibited better shoot growth and higher chlorophyll content than the dual 

application of biochar + elemental sulfur. In spite of that the latter treatment exhibited higher contents of K and 

Zn (but not Fe) in shoots. General, these results did not confirm the 3
rd

 hypothesis which indicates that the 

relatively low cost  additives (biochar+ elemental sulfur) on plant nutritional status and growth performance 

could be competent or even superior to the effect of the relatively expensive sulfuric acid modified biochar. May 

be elemental S should be applied in sucessive doses and this point should be considered in future studies.  

Future  perspectives are needed to find out the efficiencies of using different sources of biochar and their acid 

modified ones to increase production of different crops in arid soils under field conditions for more than 2 

sucessive seasosn, while monitoring the changes in soil sustainability parameters and also evaluating the 

economic revenues of these treatments. 
 

List of abbreviations: 

NoBC: no added biochar 

BC:normal biochar 

SMBC: acid modified biochar 
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