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OIL salinity constitutes a significant threat to crops. Probably, adding some soil additives such as 

biochar could alleviate salt stress and , at the same time, improve soil characteristics. To test this 

hypothesis,  crop residues were collected and subjected to pyrolysis to prepare normal biochar. 

Portions of this product were acidified with sulfuric acid, while the other portions were left non-

acidified. Then, a pot experiment of a complete randomized design was established comprising 5 

treatments, with three replicates each, i.e. either  5 or 10 g kg-1 of each of acid modified biochar and 

the non-acidified one, beside of the non-amended control soil (EC= 5.94 dS m-1) which was deemed a 

control one. Wheat was sown in all pots and soil moisture was sustained at field capacity using well 

water (EC = 0.59 dSm-1)  throughout the duration of the experiment. After a period of approximately 

50 days post-germination , proline and chlorophyll contents were assessed in shoots. At physiological 

maturity stage, whole plants were harvested and soil samples were collected from the rhizosphere of 

each pot. The plant stress osmoprotectant named proline decreased significantly in plants amended 

with biochar as if these plants suffer less from salinity stress. Moreover, plant biomass improved 

significantly due to biochar application, with superiority for the acidified one. This additive (acid-

modified biochar) also augmented grain to shoot ratio; number of plants per pot, number of spikes per 

plant and plant height, while lessened root-to-shoot ratio. In this regard, the most significant 

enhancements in the aforementioned plant growth parameters were observed at the higher application 

rate of biochar, specifically 10 g kg-1. The improvements in plant growth parameters exhibited a 

substantial correlation with the concomitant increases in nitrogen, phosphorus, and potassium (NPK) 

uptake by the plants. Notably, K concentrations in the shoots were sufficiently high, suggesting a 

potential role in osmoregulation. On the other hand, no significant differences were detected in leaf 

chlorophy (SPAD) among the investigated treatments. Concerning soil organic carbon content, a 

markable increase was noted in soil following the application of biochar, especially the non-acidified 

biochar when being applied at a rate of 10 g kg-1. Nonetheless, the latter application rate raised 

significantly soil salinity, while acid modified biochar declined soil EC. In conclusion, the 

improvements in characters of salt affected soils due to intensive cropping  and enhancement of wheat 

growth as noted for the application of acidified biochar may, at times, be more effective than the 

effect of the soil amendment itself, which is remarked for application of non-acidified biochar.  
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1. Introduction 

Wheat is a strategic crop in many countries around the world (Dianatmanesh et al., 2022; Lalarukh et al., 2022a, 

b & c). In Egypt , it is a strategic commodity crop (Hussein et al., 2022; Abdalla et al., 2023; Abd El-Aty et al. 

2024; Rashwan et al. 2024), which provides the population with 1/3 of their daily caloric intake (bread baladi) 

(Abdalla et al., 2023).  

Soil salinity poses a threat to food production and security around the world (Iqbal et al., 2014; EL Sabagh et al., 

2021; Parveen et al., 2024), especially in arid and semi-arid regions (Gorji et al., 2015). This problem expanses 
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over 100 countries and diminishes the quality of about one billion of hectares (Singh, 2022), which represents 

approximately 7% of the earth's land surface (Hopmans et al., 2021). Expected yields in such area do not exceed 

20% to 50% of the optimum yield (Shrivastava and Kumar, 2015). This is because of osmotic and ionic stresses 

in plants, e.g. lessen plant growth, decrease in water potential, increase in active oxygen species and imbalance 

in nutrients uptake (Ahmed et al., 2021). Thus, salt-stressed soils should be managed properly to achieve the 

Sustainable Development Goals (SDGs) of UN, specially the one named “zero huger” (Singh, 2021).   

Egypt is one of the arid countries which suffer from soil salinity (Fahd et al., 2023). This salinity altimately 

causes farmland deterioration (Abdullahi  et al., 2023) and harshly distresses the sustainability of food 

production thereon (Mohamed et al., 2023). 

Biochar is an organic additive that may help to ameliorate the salinity stress in salt-affected soils (Saifullah et al., 

2018; Kul et al., 2021). This product results from the pyrolysis of organic residues in absence of oxygen 

(Bassouny and Abbas, 2019; Elshony et al., 2019; Abdelhafez et al., 2021; Asaad et al., 2022; Farid et al., 2022; 

Tolba, 2021; Gyanwali et al., 2024; Mohamed et al., 2024). It is then added to salt affected soils to increase their 

contents of stable water aggregates (Saifullah et al., 2018) in order to allow better salt leaching (Huang et al., 

2019b).  

This organic product also enhances the cation exchange capacity (CEC) of the soil, while diminishes the levels 

of soluble salts (Ahmed et al. 2021). Furthermore, it elevates the exchangeable potassium (K
+
) content in soil 

and improves the K
+
/Na

+
 ratio in plants, thereby decreasing electrolyte leakage (Kul et al., 2021) and increase 

plant tolerance to salinity stress (Wu et al., 2024). It is worth noting that plants exhibit an increase in an 

endogenous osmolyte as a self-defense mechanism under stress (Koc et al., 2024) while biochar application 

declined this osmolyte in shoots, which indicates that plants become less stressed (Shahzadi et al., 2024) 

One of the main drawbacks of using biochar in arid soils is its alkaline nature (Abdelhafez et al., 2014), which 

lessen the availability of many soil nutrients in soil and therefore plants grown on such soils suffer from nutrient 

deficiency (Khalil et al., 2023). Alternatively, acid modified biochar can be used effectively (El-Sharkawy et al., 

2022). Although this additive exhibits higher surface area than normal biochar (El-Sharkawy et al., 2022); yet its 

stability in soil could be lower than that of normal biochar. 

The present investigation evaluates the effectiveness of both normal alkaline biochar and the acid-modified one 

as soil amendments, applied at rates of 5 and 10 g kg
-1

 of soil, in order to improve the characteristics of salt-

affected soils and enhance growth of wheat cultivated thereon. To assess these impacts on the grown plants, a 

range of morphological (including plant dry weights, root-to-shoot ratio, and grain-to-shoot ratio), physiological 

(NPK uptake), and biochemical indicators (specifically proline content in shoots) have been measured in this 

study. Also, their impacts on some soil characteristics (soil organic matter, soil pH and EC) by the end of the 

growing season were also a matter of concern.  

Generally, the current study anticipates that non-acidified biochar could effectively hinder soil EC thus increase 

wheat growth and productivity (hypothesis I). Acid modified biochar could; on the other hand, increase soil EC 

temporarily; nevertheless because of its relatively high degradation rate versus normal biochar, it enriches plants 

with nutrients needed for proper wheat growth and productivity (hypothesis II). Overall, the improvement in 

characteristics of salt affected soils under intensive cropping practices and application of acidified biochar may 

occasionally be more effective than the application of the soil amendment alone, which is remarked, in this study 

for application of non-acidified biochar (hypothesis III). 

2. Materials and methods 

2.1. Materials of study 

Surface soil samples (0-30 cm) were collected from Agricultural Research Center, EL-

Sabhya Station, Alexandria. These  samples were mixed together to form a composite sample, then air dried, 

crushed and sieved to pass through a 2-mm sieve, and their chemical and physical characteristics were 

determined as outlined by Sparks et al. (2020) and Klute (1986), respectively, The obtained results are presented 

in Table 1. 
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Table 1. Soil chemical and physical properties. 

Character Soil 

pH 

Soil EC 

(dS m-1) 

Calcium 

carbonate 

content 

(g kg-1) 

Soil 

organic 

matter  

(g kg-1) 

Field 

capacity 

(%) 

Particle size distribution (%) 

Fine 

sand 

Coarse 

sand 

Silt clay Textural 

class 

Value 7.88 5.94 147.1 17.2 32.50 13.79 26.50 23.66 36.05 Clay loam 

*Soil pH was determined in soil:water suspension (1:2.5), soil EC was measured in soil paste extract 

In this study, maize stover was collected Egypt. These residues from farms that are situated in Moshtoohr, 

Benha, were oven-dried at 65°C overnight, then pulverized and sieved. Afterwards, these residues were heated in 

a muffle furnace at 550°C for 2 h under limited aeration conditions (pyrolysis). The product was divided into 

two halves, the first half was used for preparation of acid modified biochar as mentioned by El-Sharkawy et al. 

(2022) via shaken with 0.1 M H2SO4 (1:100 w/v) for 4 h at 150 rpm then filtered and rinsed in tap water 

followed by double distilled water to remove chemicals. Thereafter, plant residues were oven dried at 70 °C. The 

other half was left non-acidified (normal biochar) 

 

Table 2. Chemical characteristics of the produced biochars. 

Character pH EC C  N H O S Yield Ash 

  dS m-1 (%) 

Normal biochar 8.57 1.28 78.02 0.52 0.75 5.82 0.33 41.56 14.56 

Acid modified biochar 4.23 2.86 68.45 0.41 3.25 12.28 1.05 38.95 14.56 

 

2.2. Methods of study. 

Fifteen plastic pots of 25 cm diameter ×19 cm depth were uniformly packed with the investigated samples 

(equivalent to 4 kg), then germinated with 10 seeds of wheat (Giza 171) on the 25
th

 November 2023. All pots 

were then fertilized with the recommended doses of N and P fertilizers, i.e. 75.6g urea (460 g kg) kg
-1

 soil 

(equivalent to 302 g N per pot) and also received 31.5 g calcium super phosphate(156 g P2O5 kg
-1

 equivalent to 

126 g P2O5 per pot).  

Pots were then distributed under the greenhouse conditions in a complete randomized design. Soil moisture was 

monitored periodically using a Tensiometer (model Theta-θ-Probe ML2x) and crops were irrigated with well 

water (EC=0.59 dS m
-1

) to keep soil moisture always at field capacity. Chlorophyll content in wheat shoots 

(SPAD) were estimated after 50 days of cultivation using CM-402 Chlorophyll Meter. On 18
th

 April, plant 

height, number of plants per pot and spikes per plant were determined. Whole plants were harvested at the 

physiological maturity stage and placed on sieves, washed with tap water to remove dusts followed by rinsing in 

distilled water twice.  

2.3. Soil and Plant analyses. 

Soil samples were collected from the rhizosphere of each pot to measure their contents of organic matter 

according to Walkley and Black method as outlined in Sparks et al. (2020), soil pH by pH meter (model Consory 

C3210) in soil:water suspension prepared at 1:2.5 and EC using EC meter (model WTW inolab Cond 720). 

Plants were divided into roots, shoots and grains then oven dried at 65 °C for 48 h. Afterwards, 0.5 g portions of 

the plant materials were wet digested using perchloric and sulfuric acids on a sandy hot plate at 250 °C 

according to Cottenie et al. (1982). In plant digest, nitrogen was determined by micro Kjeldahl apparatus, 

phosphorus was measured photometrically by JENWAY 6405 UV/VIS. following molybdate-ascorbic acid 

method and potassium was assessed by flame photometer (model JENWAY PFP7). Proline was determined in 

shoots after 50 days of cultivation according to Bates et al. (1973). 

2.4.  Data processing. 

All chemicals, which were utilized in this research, were of analytical grade. The data were analyzed using one-

way ANOVA and Dunnett’s test through SPSS statistical software version 18. Graphs were created using Sigma 

Plot version 10. Root-to-shoot ratio was calculated as the ratio of root dry masses to shoot dry masses (Ma et al., 
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2010; Fayed et al., 2018), whereas the grain-to-shoot ratio was computed as the ratio of grain dry masses to 

shoot masses. 

3. Results 

3.1 Chemical characteristics of the produced biochars 

Data presented in Table 2 provides an intricate comparison of the properties of normal and acidified biochar, 

outlining various distinct parameters. The pH level of the acidified biochar was 4.23, while the non-acidified 

(normal) one was 8.57. Eectrical conductivity (EC) of the acidified biochar (2.86 dS m⁻¹) was notably higher 

than that of normal biochar (1.28 dS m⁻¹ ).  Carbon content decreased from 78.02% in normal biochar to 68.45% 

in the acidified one, while nitrogen content decreased slightly from 0.52% to 0.41%. Remarkably, the acidified 

biochar contained a greater hydrogen content of 3.25%, compared to only 0.75% in normal biochar, and also 

exhibited an increase in oxygen content from 5.82% to 12.28%. Additionally, sulfur content was higher in 

acidified biochar, upgraded from 0.33% to 1.05%.  On the other hand, the yield of acidified biochar is slightly 

lower (38.95%) than that of normal biochar (41.56%), and both contained equivalent ash contents of 14.56%.  

3.2. Effects of applied biochars on soil chemical characteristics 

Amending the investigated salt-affected soil with either acid-modified or normal biochars raised significantly 

organic C content in soil. Such increases were notable with increasing the application rate from 5 to 10 g kg
-1

, 

with superiority for the non-acidified biochar versus the acidified one (Fig 1A).  

No significant variations were found in soil pH owing to the application of any of the two types of biochar (Fig 

1B). Regarding soil EC, application of non-acidified biochar raised significantly soil salinity only when being 

applied at the highest rate (10 g kg-1), while the application of the acid modified biochar decreased significantly 

this parameter. In this concern, there were no significant variations in soil EC with increasing the rate of applied 

acidified biochar from 5 to 10 g kg
-1 

(Fig 1C). 
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Fig. 1. Soil chemical characteristics (means ± standard deviations) as affected by application of acidified 

and non-acidified biochars.  

Note: NB 5: non acidified biochar at a rate of 5 g kg-1, AB 5: acidified biochar at a rate of 5 g kg-1, NB 10: non acidified 

biochar at a rate of 10 g kg-1, AB 10: acidified biochar at a rate of 10 g kg-1. Similar Dunkan’s letters indicate no significant 

variations among treatments  

3.3. Effects of applied biochars on plant growth parameters 

Application of either acidified or non-acidified biochar enhanced noteworthy the dry weights of wheat shoots 

and grains, as illustrated in Figure 2A. Such increases were more pronounced when acidified biochar was 

utilized, especially at its higher application rate. Additionally, both amendments promoted root development, but 
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this significance was observed only when they were being applied at a concentration of 10 g kg
-1

, where 

acidified biochar demonstrated a distinct advantage. Even so, the stressed plants continued to experience higher 

root-to-shoot ratios, with decline in grain to shoot ratio.  

Incorporation of biochar into the soil decreased the ratio of root-to-shoot, while simultaneously augmented grain-

to-shoot ratio. This effect was particularly pronounced when adding the acid-modified biochar at a rate of 10 g 

kg
-1

. There was a slight decline in the grain-to-shoot ratio for plants that received the biochar at the higher rate of 

10 g kg
-1

 compared to those amended with 5 g kg
-1

; nevertheless these reductions were significant. 
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Fig. 2. Plant dry weights (A), root-to-shoot ratios (B) and grain-to-shoot ratios (C) (means ± standard 

deviations) as affected by application of acidified and non-acidified biochars. See footnote Fig 

1.Similar Dunkan’s letters indicate no significant variations among treatments 

Likewise, number of plants per pot, number of spikes per individual plant, and the overall plant height showed a 

noteworthy enhancement when being cultivated on the soil enriched with biochar compared to the corresponding 

ones grown on the non-amended control soil (Fig 3). The highest increases were observed in the soil treated with 
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10 g kg
-1 

as acidified biochar. On the other hand, no significant variations were remarked for application of the 

two types of biochars on chlorophyll content within plant shoots. 
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Fig. 3. Plant growth parameters (means ± standard deviations) as affected by application of acidified and 

non-acidified biochars. See footnote Fig 1. Similar Dunkan’s letters indicate no significant 

variations among treatments.  

 

3.4. Effects of applied biochars on nutrients availability and uptake by plants 

 

The obtained results revealed that there were no notable differences in nitrogen (N) concentrations within the 

different parts of wheat plant, i.e.  roots, shoots, and grains, regardless of the rate of biochar application (Fig 4). 

Concerning phosphorus (P) concentrations in wheat parts, the most significant increases were found in roots of 

the plants treated with non-acidified biochar at a dosage of 10 g kg
-1

. The highest increases in P within the 

aboveground tissues were for acidified biochar applied at a rate of 10 g kg
-1

. Similarly, this particular treatment 

recorded the highest increases in K content within wheat grains.  
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Fig. 4. Concentrations of NPK (means ± standard deviations) within different wheat parts as affected by 

application of acidified and non-acidified biochars. See footnote Fig. 1.  Similar Dunkan’s letters 

indicate no significant variations among treatments. 

 

Regarding NPK uptake by wheat plants (multiplication of nutrient concentrations by dry matter yield), it was 

observed that these essential nutrients increased significantly within the various parts of plant as a result of 

biochar application. Notably, such increases became more pronounced with higher doses of biochar application. 

Specifically, the most considerable increases were noted for the acidified biochar versus to the non-acidified one. 
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Fig. 5. Uptake of NPK (means ± standard deviations) by different wheat parts as affected by application of 

acidified and non-acidified biochars. See footnote Fig 1. Similar Dunkan’s letters indicate no 

significant variations among treatments. 

 

3.5. Proline as an indicator of salinity stress imposed on wheat plants 

Results presented in Fig 6 reveal that proline content decreased significantly in shoots of wheat plants grown on 

a soil amended with any of the two types of biochars. The highest reductions occurred in plants that received 

acidified biochar, which were 33.4% in plants amended with 5 g AB kg
-1

 (AB 5), and 36.6% when plants 

received 10 g AB kg
-1

 (AB 10). It seems that increasing the application rate of both types of biochar from 5 to 10 

mg g
-1

 did not affect significantly this stress indicator. 
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Fig. 6. Proline content (means ± standard deviations) in wheat shoots as affected by application of 

acidified and non-acidified biochars. See footnote Fig 1. Similar Dunkan’s letters indicate no 

significant variations among treatments. 
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3.6 Root, straw and grain yields of wheat plants affected by proline content in shoots and the total NPK uptake 

by plants 

Significant positive correlations were detected among the dry weights of wheat roots, straw and grain yields. 

These dry weights were, at the same time, significantly correlated with their uptake of NPK nutrients. Likewise, 

significant correlations existed among the uptake values of these three nutrients by plants. Shoot and grain 

biomasses of wheat (but not root dry weights) were correlated significantly and negatively with the proline 

content in shoots. It seems that this proline content did not only affect grain-to-shoot ratio but also raised root-to-

shoot ratio of the grown plants 

 

Table 3. Correlations between growth parameters and productivity of wheat plants grown on a salt 

affected soil as affected by proline content in straw and their total NPK uptake by plant. 

 
Root dry 

weight 

Straw dry 

weight 

Grain dry 

weight 

Root/shoot 

ratio 

Grain/shoot 

ratio 

Proline 

content 

N-

uptake 

P-

uptake K-uptake 

Root dry weight  0.931
**

 0.885
**

 -0.363 0.696
**

 -0.388 0.892
**

 0.939
**

 0.943
**

 

Straw dry weight   0.874
**

 -0.657
**

 0.889
**

 -0.673
**

 0.933
**

 0.998
**

 0.981
**

 

Grain dry weight    -0.578
*
 0.619

*
 -0.536

*
 0.985

**
 0.891

**
 0.944

**
 

Root/shoot ratio     -0.765
**

 0.957
**

 -0.680
**

 -0.644
**

 -0.644
**

 

Grain/shoot ratio      -0.793
**

 0.738
**

 0.876
**

 0.810
**

 

Proline content       -0.649
**

 -0.649
**

 -0.652
**

 

N-uptake        0.944
**

 0.977
**

 

P-uptake         0.983
**

 

K-uptake          

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

4. Discussion  

4.1. Wheat growth and productivity under salinity conditions 

The least growth parameters  and productivity of wheat were noticed in the control plants subjected to salinity 

stress. Their root biomasses increased relative to their shoots to exhibit the highest root-to-shoot ratio. Probably, 

such increases in root biomasses were to access new areas that contained non-saline water (Bazihizina et al., 

2012); yet these biomasses were overall less than the corresponding ones of non-stressed plants (Zeeshan et al., 

2020).  

The vegetative growth of stressed plants also decreased in response to soil salinity (Khataar et al., 2018) as the 

majority of carbon products in plants and energy acquired by photosynthesis were re-used in cell maintenance 

(Munns and Gilliham, 2015).  Besides, a drop occurred in C-compounds and energy which are essential for floral 

development and grain filling (Munns and Gilliham, 2015). Thus, the grain-to-shoot ratio diminished, whereas 

the root-to-shoot ratio increased. Anyhow, these reductions in wheat shoots may help to minimize water 

transpiration under such stressful conditions (Harris et al., 2010). Under these stress conditions, further declines 

in wheat growth parameters were evident. For instance, number of plants per pot decreased, which became 

stunted and of shorter spike length.  

Application of biochar alleviated salinity stress on plants as denoted by the significant reductions that occurred 

in proline content within shoots. This  low-molecular solute increase salinity tolerance in plants (Iqbal et al., 

2014) via preserving osmotic adjustment which keeps membranes from damage (Shafi et al., 2019). Thus, 

application of biochar enhanced root, shoot and grain yields. Similar results were reported by Akhtar et al. 

(2015), Kanwal et al. (2018) and Huang et al. (2019a). In this concern, the highest increase in grain-to-shoot was 

calculated for plants that received the higher doses of acid modified biochar (AB 10). Also these plants 

demonstrated the least root-to-shoot ratio. A point to note is that the acidified biochar decreased the stress 

marker named proline to concentrations beyond those attained for normal biochar. Despite the salinity stress, 

chlorophyll content did not vary significantly among plant shoots, irrespective of the type and rate of applied 

biochar. 
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4.2. NPK concentrations and uptake by wheat plants under salinity conditions 

Nirogen content did not vary significantly within the studied plant parts (roots, traw and grains) owing to the 

applied biochar treatments. This nutrient is thought to be incorporated in biosynthesis of amino acids and 

proteins (Krapp, 2015), which increased plant growth and development (Kraiser et al., 2011) rather than being 

accumulated in high concentrations within plant tissues. Unlike N, P influx needs metabolic energy and high-

affinity transporters (Smith et al., 2011). This nutrient (P) accumulated in higher concentrations in plants that 

were amended with biochar, as P is needed for root and shoot development (Betencourt et al., 2012) as well as 

grain productivity (Fischer, 2011).  

Concentration of potassium (K) also increased in various sections of plants treated with biochar. This 

phenomenon probably decreased sodium-to-potassium (Na/K) ratio, which in turn resulted in a notable 

improvement in both growth and yield (Ahanger and Agarwal, 2017). It is important to highlight that the highest 

concentration of potassium was observed in shoots of plants, corresponding to other plant parts, suggesting its 

role in osmoregulation and enhancement of antioxidative capabilities to mitigate reactive oxygen species (ROS) 

(Sehar et al., 2021). Overall, uptake of nitrogen, phosphorus, and potassium (NPK) were higher in wheat plants 

supplemented with biochar, particularly the ones that received the higher application rate of 10 g kg
-1

 of acidified 

biochar. 

4.3. Effect of applied biochars on soil chemical characteristics 

Application of biochars (acid-modified and normal ones) raised significantly soil organic carbon in soil. This is 

because of their high stability in soil (Gross et al., 2021) which may last for more than 11 years in the top soil 

(Gross et al., 2021). Besides, biochar augmented the humification of the dissolved organic matter in soil (Feng et 

al., 2021). In particular, acid modified biochar is more easily biodegradable in soil than the normal one (Khalil et 

al., 2023); thus its residual content by the end of the growing season could be relatively lower as found herein. 

Acid modification of biochar also raised its CEC while decreased its pH (Murtaza et al., 2022), and this (high 

CEC) in turn immobilized partially soluble salts in soil; thus decreased soil EC (El-Sharkawy et al., 2022). 

Generally, the investigated soil is characterized by its high buffering capacity because of its relatively high 

content of clay (36.05%), so no significant changes in soil pH were noticed owing to the application of the two 

types of biochar. 

Overall, the above results confirm the feasibility of the two types of biochar as soil additives to ameliorate a salt 

affected soil and therefore, the 1
st
 and 2

nd
 hypotheses become valid. Because the decline in soil EC and the 

increases that took place in wheat growth parameters were more noticeable in the soil amended with acid 

modified biochar versus the non-acidified one; thus the third assumption was also supported. This assumption 

indicates that “amelioration of saline soils under high cropping (using acidified biochar) could sometimes be 

more functioning than the action of the soil amendment itself(using non-acidified biochar)”. 

 

5. Conclusion and Future Prospective  

Application of biochar decreased the stress marker named proline within wheat shoots. Moreover, its application 

enhanced plant growth and productivity, i.e. root, shoot and grain dry weights. In addition, application of biochar 

boosted other plant growth parameters, i.e. grain to shoot ratio; number of plants per pot, number of spikes per 

plant and plant height. The highest increases in wheat growth parameters and productivity were attained for the 

acid modified biochar treatment when being added at a rate of 10 g kg
-1

. Such increases were probably the 

consequences of increasing NPK uptake by wheat. In particular, acid modified biochar was more easily 

biodegradable and released more nutrients than normal biochar. This probably raised initially soil EC, while 

lessened residual organic carbon by the end of the growing season versus normal biochar. On the other hand, its 

high CEC retained many salts in soil (Ahmed et al., 2021); accordingly soil EC re-decline by the end of the 

growing season to values lower than that of the control.  

Future  perspectives are needed to find out the feasibility of using these additives for alleviating salt stress in 

different crops under field conditions on the long run. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/humification
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