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ATER pollution possesses a potential threat to the surrounding ecosystem. Thus, the current 

study investigates the efficiency of using two safe organic products, named hydrochar and N-

doped hydrocar for removal of Pb(II) from contaminated waters. To attain this aim, sugarcane 

bagasse was collected then pyrolyzed (+/-NH3) in an electric furnace at 200 ̊C for 24 h. Thereafter, 

the efficiency of each organic product for removal of Pb(II) from a water artificially polluted with 

Pb(II) (55 mg Pb L-1) was tested individually. These hydrochars were added at a rate of  0.25g to 

purify 500 mL of contaminated water. Throughout the experimental period, water samples were 

collected periodically at 13 time periods starting from the zero time up to 360 min of contact with 30 

min time intervals. Key results indicate that application of hydrochar remarkably diminished soluble 

Pb(II) concentrations. In this concern, Pb(II) sorption occurred from the beginning of contact with 

experiment up to 150 min of contact, recording approximately 70% Pb(II) removal efficiency. 

Thereafter significant increases in soluble Pb(II) occurred, which accounted for about 50% of the 

sorbed Pb(II) amount. On the other hand, N-doped hydrochar lessened considerably Pb sorption (≈3 

folds) and, at the same time, accelerated its desorption. Kinetics of Pb(II) desorption by using both 

types of hydrochars followed the inverse third-order model. These results supported our main 

hypothesis, while raises doubts about the feasibility of using hydrochars for successful 

decontamination of  waters polluted with Pb(II). Future  perspectives are needed to find out better 

modifications of hydrochar for effective removal of contaminants from wastewaters and investigate 

the mechanisms beyond their modes of action. 
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1. Introduction 

Water is a crucial ingredient of the whole ecological system (Salam 2024; Sári et al. 2024). For mankind, it is an 

important component to attain the US sustainable developmental goals (Mujtaba et al. 2024). Despite that, the 

main challenge is to supply safe drinking water for 6.9 billion of population around the world (Oelkers et al. 

2011), and there appears to be a gap between available fresh water and human population growth (Qureshi 2020; 

Saquib et al. 2022). Actually, 80% of the world population suffer from fresh water scarcity (Scanlon et al. 2023) 

and maybe the conflict over water could direct ‘water wars’ in the next few years (Biswas and Tortajada 2019). 

Another global threat is unsafe drinking water which leads to death of approximately 485,000 of the world 

population annually (Zhang et al. 2023), especially in low- and middle-income countries (Jury and Vaux, 2007; 

Lee et al. 2023). Accordingly, effective alarming systems should be run to follow up changes in water quality 

and safety (Ateia et al. 2024). In this aspect, potentially toxic elements (PTEs) are of particular anxiety (Abbas et 

al. 2015 & 2017; Hussain et al. 2020; Farid-ul-Haq et al. 2021; Sarhan et al. 2021; Ali et al. 2023; Abd-El-Hady 

and Abdelaty 2022; El-Shwarby et al. 2022; Belal et al 2024) because PTEs are non-biodegradable; hence, have 

accumulative nature (Ali et al. 2023; Dehghani et al. 2023).  

Lead (Pb) is among these contaminants which causes “serious damage to the central nervous system, 

reproductive system, liver, and kidney (Dehghani et al. 2023)”, even at small concentrations (Wu et al. 

2023).Thus, effective remediation/treatment protocols should be followed to avoid the indirect negative impacts 

of wastewaters on the surroundings. For example, these wastewaters may come in contact with fresh water 
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bodies in nearby areas via hydraulic continuity causing disasterious ecological impacts (Bassouny et al. 2020; 

Farid et al. 2020). 

Various methods are suggested for water remediation, such as “chemical precipitation, ion exchange, reverse 

osmosis, membrane filtration, bio absorption, adsorption methods and phytoremediation” (Lodhi et al. 2019; 

Panneerselvam and Priya K 2023). Biochar and hydrochar are among the sustainable, ecofriendly and 

economical additives that follow circular economy (Padhye et al. 2022) in converting organic residues into 

valuable products  (Wu et al. 2021; Islam et al. 2022). These products can then be used in environmental 

remediation and also to mitigate climate change (Zhang et al. 2021).  

Production of hydrochar takes place through pyrolyses of organic wastes at high temperature in presence of 

water (Azzaz et al. 2020; Kaboggoza et al. 2024) and self generated pressure (above saturated vapor pressure) 

(Merzari et al. 2020). This may save energy-intensive pre-drying (Jalilian et al. 2024). Hydrochar acts as an 

adsorbent that can remove considerable concentrations of nutrients (Wu et al. 2021) and potentially toxic 

elements from wastewaters (Babeker and Chen 2021). Aditionally, their PTEs contents seemed to be of 

relatively high degree of stability (Liu et al. 2023). In this aspect, hydrochar efficiency for removal of Pb could 

reach 78% (Adebisi et al. 2016). Probably, activating surface functional groups through chemical/physical 

methods may further improve hydrochar efficiency as an adsorbent (Jalilian et al. 2024). For example, iron 

modified hydrochar increase its capability to sorb more potentially toxic elements such as As(Zhang et al, 2024), 

Cr (Cui et al. 2024), Pb and Sb (Teng et al. 2020). N-doped hydrochar is another modification that may also help 

in removal of considerable concentrations of PTEs from wastewaters (Leng et al. 2020; Wang et al. 2023), such 

as Pb(II), Cd (II)(Khan et al. 2019),  Cu(II) and Cr(VI) (Kim et al. 2023). Its efficcieny for removing Pb from 

aqueous solutions was estimated by 80% (Li et al. 2022). There is a lack of studies regarding hydrochar 

applications as amendments to improve the surrounding environment (Masoumi et al. 2021), especially the N-

doped type in the remediation field of wastewaters. Thus, the current study investigates the efficiency of using 

both hydrochar and N-doped hydrocar individualy for removal of Pb(II) from contaminated waters.  

Distinctively, we anticipate that hydrochar could remove considerable concentrations of Pb(II)  from wastewater 

with high efficiency, yet Pb(II) ions might not be strongly bond to  the surface functional groups of N-doped 

hydrochar. This is because Pb(II)  is sorbed as a an outer sphere complex, in the form of a monolayer as 

mentioned by Koprivica et al. (2023). On the other hand, NH4
+ 

ions are specifically sorbed on organic sorbents 

(Hu et al. 2020) and if traces of NH4
+ 

ions still existed in doped hydrochar, then these ammonium ions could 

substitute surface bond cations such as Pb(II). Moreover, N-based functional groups are specific mainly for 

adsorption of anionic species (Kasera et al. 2022) and more than 93% of the soluble Pb(II) in wastewater exists 

in the form of positively charged ions (Yamada and Katoh 2020). Our assumption may therefore contradict the 

findings of many researchers, consequently kinetics of Pb(II)  sorption/desorption on these sorbents were a 

matter of concern in this study.  

2. Materials and Methods 

2.1.1. Preparation of Pb(II) contaminated water 

Lead acetate trihydrate (≥99% Sigma Aldrich) was dissolved in double distilled water (ddH2O) for preparation of 

a solution, containing 55.5 mg Pb L
-1

. Sugarcane bagasse(BG) was collected from the nearby juice bars, washed 

with distilled water and dried at 70° C for 48 h. Thereafter, plant residues were crushed, and divided into two 

equal parts. The first portion was mixed in a Teflon vessel with distilled water at a rate of 1:10, , then placed in 

an electric furnace at 200 C for 24 h. Thereafter, the organic product was washed with distilled water, filtrated 

then oven dried at 55°C. The second part was prepared as mentioned above; yet plant residues were dipped in 

ammonia chloride solution rather than distilled water prior to being placed in the electric furnace (Li et al. 2021) 

Schem 1 . 

2.1.3. Characteristics of hydrochars under investigation 

The SEM images of studied hydrochars exhibit substantial modifications in their surface morphologies (Fig 1). It 

seems that N-dopped hydrochar (Fig 1B) was less compacted than the normal hydrochar (Fig 1A).  

Multipoint BET method was applied to determine the surface area of the two types used hydrochars (Fig 1 C & 

D) and the results are presented in Table 1. It seems that the N-doped hydrochar exhibited lower surface area 

than the corresponding one of normal hydrochar. This might be because hydrochars contained higher oxygen 

rich functional groups than N-doped hydrochars (Table 2). 



 ARE NORMAL AND N-DOPED HYDROCHARS EFFICIENT ENOUGH FOR REMOVAL OF PB(II) … 47 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

Egypt. J. Soil Sci. 65, No. 1 (2025) 

 

 

 

 
Fig. 1. SEM images (A: hydrochar and B: doped hydrochar) and BET Multi-point graphs (C: hydrochar and D: 

doped hydrochar).  

 

 
Table 2. Element analysis of the investigated hydrochars.  

 

 

Surface area 

(m² g
-1

) 

Atomic ration Element Content (%)  

 

Organic product 

(O+N)/C H/C O/H O N H C   

320.443 0.433 0.085 2.62 14.679 13.83 5.601 65.89 Hydrochar 

116.1 0.345 0.096 0.92 6.146 17.802 6.652 69.4 N-doped hydrochar 

 

2.2. The experimental study 

Seventy eight centrifuge cups were filled with 500 mL of water artificially contaminated with Pb(II). These 

waters received either hydrochar or N-doped hydrochar at a rate of 1: 2000 (0.25 g: 500 mL of the Pb(II) 

contaminated water sample). All tubes were then agitated, while being sampled (3 replicates) at the following 

periods: 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360 min). Samples were then subjected to 

centrifugation (SC-3610, Changzhou, China) at 3000 rpm for 10 min, and filtrated with Whatman filter paper no 

42. Pb contents in the filtrate were determined by Inductively Coupled Plasma (ICP-OES Perkin Elmer 5300 

DV). 
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Schem 1.  Diagram for the experimental procedure. 

2.3. Data processing 

Graphs were plotted using Sigma Plot 10 software. Removal efficiency data of Pb(II) was calculated according 

to Liu et al. (2020) as shown below 

𝑅% =   
𝐶0−𝐶𝑒

𝐶0
 100   (1)  

Calculated data were subjected to one way anova and Duncan multiple range tests using SPSS 18 statistical 

software.   

Sorption capacity was calculated according to Liu et al. (2020) as follows. 

𝑞𝑒 =
𝑉(𝐶𝑜×𝐶𝑒)

𝑚
    (2) 

where Co and Ce are the initial and subsequent concentrations of Pb(II) determined at the studied sampling 

periods, in a solution of volume (v), after adding (m) grams of hydrochar (on dry bases). All chemicals of the 

study were of analytical grade. 

Kinetics of Pb(II) desorption were then fitted to 4 kinetic models, i.e. inverse first order, inverse second order, 

inverse third order and exponential decay model. Standard error of estimate (S.E.) was calculated as outlined by 

Shariatmadari (2006) 

  2
1

2 )]2/()([ nQQSE tt



  (3)
 

Where 
tQ and 



tQ
are the measured and predicted concentrations of sorbed Pb(II) at time t, respectively, while 

n is the number of measurements. 
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3. Results 

3.1. Characterization of the used hydrochars 

Adsorption peaks of FTIR were detected at <1000, 3000 and 3700 cm
-1

and the broad band peak was seen around 

1750 cm
-1

. The functional groups at frequency range (cm-1): 600-700 (C-H linkage), 1000 (C-N groups) (Chen 

et al. 2022),  around 1700 (C=O stretching), 2080 (NH2 peak) (Arief et al. 2008), 3000 (C-H stretching) (Dong 

et al. 2019). Probably, higher band peak (≈3700 cm
-1

) is associated with hydroxyl (–OH) group (Khan et al. 

2019) Fig 2 A.  

Regarding the XRD chart (Fig 2 B), a wide peak was observed at 2θ≈23°, revealing the amorphous structure of 

the non doped type of hydrochar with NH4Cl relative to N-doped hydrochar, or probably there were smaller 

crystals with defects in structure. 

 
 

Fig. 2. FTIR spectra (A) and XRD chart (B) for both N-hydrochar (black beak) & hydrochar (red peak). 

3.2. Removal of Pb(II) from decontaminating water by hydrochars 

Application of hydrochars (+/- N-doping) remarkably diminished Pb(II) concentrations in contaminated water; 

yet within only short time periods; thereafter significant increases occurred (Fig 3). The reductions in Pb(II) 

concentrations were distinguished as Pb sorbtion which lasted for 150 min of contact when using non-doped 

hydrochar with N as an adsorbent, while remained only 60 min when using N-doped hydrochar. On the other 

hand, the re-rise in Pb(II) soluble concentrations were remarked as Pb(II) desorption. These results signify that 

the presence of NH4
+ 

in hydrochar lessened considerably Pb(II)  sorption and, at the same time, accelerated its 

release back to the solution.  
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Fig. 3. Kinetics of Pb(II)  sorption/desorption on hydrochar surfaces (mean±standard deviation).  

Removal efficiencies of Pb(II)  due to application of hydrochars (+/- NH4
+
) were then calculate and presented in 

Fig. 4. Results revealed that these efficiencies increased significantly within short time periods of contacts; 

thereafter decreased noticeably. The increases in removal efficiencies of Pb(II) continued up to 120 min with 

hydrochar application, recording approximately 70%; while the corresponding increases in removal efficiencies 

of Pb (II)  in case of N-doped hydrochar took only 60 mins and removed about 25% of soluble Pb(II). Notably 

C=O 
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O-H 
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C-H 
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groups 
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https://www.sciencedirect.com/topics/chemistry/hydroxyl
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about 50% of the sorbed Pb(II) by the two types of hydrochars returned back to the solution in soluble forms by 

the end of the experimental period. Overall, non-doped hydrochar with NH4
+ 

removed higher Pb(II) 

concentration (≈3 fold) than that removed by hydrochar which was doped with NH4
+
.  
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Fig. 4. Removal efficiencies of Pb (II) from contaminated waters by hydrochars (mean±standard deviation). No 

significant variations among similar letters. 

3.2. Desorption kinetics of Pb(II) on hydrochars 

Desorption kinetics data of Pb(II) were fitted to 4 mathematical methods, i.e. inverse 1
st
 order, inverse 2

nd
 order, 

inverse 3
rd

 order and exponential decay (Fig 5) and the results are presented in Table 2. 
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Fig. 5. Kinetics of Pb (II)  desorption (mean±standard deviation)from hydrochars. 
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Table 2. Correlation coefficients (r
2
), standard error of estimates (S.E.) and calculated parameters for the 

fittings of Pb(II) sorption kinetics on hydrochars. 

 

 Inverse 1
st
 order Inverse 2

nd
 order Inverse 3

rd
 order Exponential decay 

 Qt=Q0+a/t Qt= Q0+a/t+b/t
2
 Qt= 

Q0+a/t+b/t
2
+c/t

3
 

Qt= a×e
-bt

 

Hydrochar 

r
2
 0.940 0.9642 0.9849 0.9575 

Standard error of estimates 4.426 3.69 2.626 3.7226 

Calculated parameters Y0=7.160 Y0=-15.677 Y0=63.367 A=127.41 

A=8840.802 A=1839.048 A=-31454.107 B=0.0042 

 B=-877886.367 B=8836110.458  

  C=-587835941  

N-doped Hydrochar 

r
2
 0.822 0.8248 0.950 0.813 

Standard error of estimates 2.797 2.9974 2.216 2.865 

Calculated parameters Y0=-0.380 Y0=-3.1889 Y0=59.125 A=44.526 

a=3036.374 a=4211.460 A=-35086.328 B=0.0052 

 b=-107983.39 B=7550044.837  

  C=-

463420392.155 

 

 

The highest r
2
 values and the least standard error of estimates were calculated for the inverse 3

rd
 order and 

therefore this model best fitted the rate limiting step for Pb(II) desorption from the two types of hydrochar. 

4. Discussion 

4.1. Removal of Pb(II) by non-doped hydrochar with NH4
+
 

Addition of hydrochar to Pb(II) contaminated water removed temporarily considerable amounts of Pb(II)  within 

the first 120 min of contact, and this amount was estimated by 70% of the Pb(II)  contamination level. Probably, 

Pb(II)  ions were bound to the negativly charged carboxyl and –OH functional groups on hydrochar surfaces 

(Malool et al. 2021).  

The maximum adsorption of Pb(II) obtained herein (75.6 mg Pb g
-1

) was comparable to the maximum adsorption 

capacities of hydrochar obtained by many researchers, i.e. 22.82 mg Pb g
-1 

for peanut hulls biochar modified by 

H2O2 (Xue et al. 2012), 45.3 mg Pb g
-1 

for the African prospis shell hydrochar (Elaigwu et al. 2014), 62.4 mg Pb 

g
-1 

for modified sewedge sludge hydrochar (Luo et al. 2020)
 
and 92.24 mg Pb g

-1 
for sugarcane bagasse alkali 

modified hydrochar  (Malool et al. 2021).  

On the other hand, more than 50 % of the sorbed Pb(II)  were set back to the solution and this might indicate that 

Pb(II)  ions were weakly bound via outer sphere complexes on hydrochar surfaces and these ions could be easily 

substituted by other ions in the solution (Zhao et al. 2021). Probably,the increases in sorption of metal ions such 

as Pb(II)  on organic complexes, forming a swarm of crowded electrons which become unstable. This increased 

its dissociation rate part by part until ion-organic complexes re-gained their stability (Wang et al. 2016). Some of 

the dissociated organic fractions could be of low molecular weight soluble Pb(II) organic-complexes(Qin et al. 

2004; Spitzer and Poolman 2009). Another scenario for the increases that occurred in Pb(II) desorption after 120 

min of contact is that many ions were set free during partial dissociation of hydrochar (Khosravi et al. 2022) and 

these ions could partially substitute some of the sorbed Pb(II) on biochar surfaces(Zhao et al. 2021). 
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4.2. Removal of Pb(II) by N-doped hydrochar 

N-doped hydrochar did not only lessened the sorbed amount (or removal efficiency) of Pb(II)  by hydrochar, but 

also delayed the timing to reach Pb(II)  maximum sorption. The studies conducted on hydrochars were not 

sufficient enough to explain our findings. Anyhow, hydrochar is a type of biochar (Kosheleva et al. 2019) which 

exhibits similar sorption capacity to biochar (Takaya et al. 2016). Probably, N-doping increased both 

hydrophobic and hydrophilic properties of this organic product as well as its acidic and basic properties (Kasera 

et al. 2022), and this consequently increased the activated sites for sorption of PTEs from wastewater (Yu et al. 

2018; Guo et al. 2020; Pan et al. 2022), mainly in the form of anions (Kasera et al. 2022). Neverthless, most of 

Pb(II)  existed as cations that bound to the surface functional groups (–COOH, and –OH) of this organic product 

(Teng et al. 2020) through ion exchange (Song et al. 2018).  

In our case, the percentage of O-containing groups decreased in N doped hydrochar while N-containing groups 

increased. This consequently decrease Pb(II)  sorption considerably via this organic product. 

Additionally, hydrochars could chelate insoluble ions found in soil, particularly Fe (Vahedi et al. 2022) which is 

the 4
th

 dominant cation (Beard and Johnson 2004), hence increased its solubility (Vahedi et al. 2022). This cation 

(Fe
3+

) or other tri-valent cations could compete on the bounding sites with Pb(II) as illustrated by the following 

equations 

Fe2O3+6H
+
 ↔ 2Fe

3+
 + 3H2O  

(Majzlan et al. 2004) 

Fe2O3(s) + 6H
+
 + 2e

−
 ↔ 2Fe

2+
 + 3H2O    (Shi et al. 2013) 

Although, both Fe
3+

 and Fe
2+

  can substitute Pb
2+

 on hydrochar surfaces, but with superiority for Fe III (Li et al. 

2020). By simple calculations, a molecule of Fe2O3 released 2 ions of Fe
3+ 

and these two  Fe
3+ 

ions could 

substitute 3 ions of Pb
2+

 and set them free; thus there is no wonder to find out that the kinetics of Pb(II) 

desorption followed an inverse 3
rd

 order model 

 

5. Conclusion and Future Prospective  

Hydrochar effectively removed 70% Pb(II) from the artificially contaminated water (55 mg Pb L
-1

) within only 

120 min of contact; yet half of the sorbed Pb(II) was loosely bound to hydrochar surfaces  and released it back to 

the solution in a soluble form. In contrast, N-doped biochar not only decreased Pb(II) removal efficiency from 

contaminated water, but also accelerated its desorption. These results support the main assumption which 

indicates that N-doped hydrochar is not the suitable choise for removal of Pb(II) from contaminated waters.  

Future  perspectives are needed to find out better modifications of hydrochar for effective removal of 

contaminants from wastewaters and investigate the mechanisms beyond their modes of action . 
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