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CCURATELY predicting crop yield under different environmental conditions and irrigation 

regimes plays a vital role in optimizing agricultural practices and ensuring food security. This 

research aims to develop a tomato yield (TY) estimation model using machine learning (ML) 

techniques, such as artificial neural networks (ANN), random forests (RF), and decision trees (DT), 

based on climate and plant variables. The climate variables include Growth Degree Days (GDD), Vapor 

Pressure Deficit (VPD), solar radiation, Total Sunshine Hours (N), Total Relative Humidity (TRH), and 

Reference Evapotranspiration (ETo). While plant variables include canopy water content (CWC), dry 

matter accumulation (DMA), N-sufficiency index (NSI), and Crop Evapotranspiration (ETc). Field 

experiments were conducted during 2022 and 2023 growing seasons, implementing three irrigation 

regimes: 100% (T100), 75% (T75), and 50% (T50) of the full irrigation requirements (FIR). The results 

showed that the highest TY was achieved at T100. In contrast, T75 resulted in a yield reduction of 

25.85% and 28.42%, while T50 led to decreases of 54.74% and 55.76% compared to T100 during the 

first and second seasons, respectively. Also, ANOVA revealed no statistically significant differences in 

model performance. However, modest improvements in yield prediction accuracy can lead to 

substantial economic benefits for farmers. The RF model displayed even better accuracy, with an RMSE 

of 2.39-4.04 and 3.80-4.00 tons/ha, and an R² of 0.94-0.98 and 0.95 during the training and testing 

phases, respectively. These findings highlight the practicality and reliability of utilizing climate and 

plant variables in combination with ML models to effectively manage tomato crop production, 

particularly when facing limited water availability for irrigation. 

Keywords: Water Stress, Climate Data, Plant Data, Ensemble Models, Yield Prediction, Artificial 

Neural Network. 

1. Introduction 

The tomato crop holds a prominent position as one of the most extensively cultivated vegetables worldwide. In 

recent years, there has been a significant increase in global tomato production, with a growth rate of approximately 

10% (Shalaby and El-Banna 2013). Notably, Egypt has emerged as a key player in tomato production, securing 

its position as the sixth-largest tomato producer globally. With an impressive cultivation area spanning 

approximately 143,618 hectares, Egypt yielded a remarkable total production of about 6.28 million tons, according 

to the latest data from (FAOSTAT 2022). However, the arid climate and limited water resources in the region pose 

significant challenges to sustaining tomato production. To overcome these hurdles, deficit irrigation strategies have 

gained considerable attention, aiming to optimize water usage while maintaining satisfactory crop yields. This 

approach, emphasized by El-Labad et al. (2019), has become increasingly prominent in addressing the unique 

water-related challenges faced in tomato cultivation. Climate variables play a crucial role in predicting crop yield 

since they directly influence plant growth and development. For instance, temperature, growing degree days 

(GDD), and vapor-pressure deficit (VPD) have been examined as climate variables that contribute to yield 

variability due to climate change, as studied (Meng et al. 2017; Aboukota et al., 2024; ElGhamry et al., 2024)  . 

These variables provide valuable insights into growing conditions and are commonly used as the primary climate 

   Egyptian Journal of Soil Science 

                   http://ejss.journals.ekb.eg/ 

 

A 

102 

https://doi.org/10.21608/ejss.2024.308236.1829
mailto:Nadia_gamal91@mans.edu.eg
mailto:mohamedsalah@mans.edu.eg
mailto:mohamed_maher@mans.edu.eg
mailto:salah.emam@esri.usc.edu.eg
http://ejss.journals.ekb.eg/


1658 NADIA G. ABD EL-FATTAH, et al., 

Egypt. J. Soil Sci. 64, No. 4 (2024) 

variables for yield prediction, as mentioned by Li et al. (2019). In addition to climate variables, the integration of 

plant-specific variables enhances the predictive accuracy of the models. Indicators such reference 

evapotranspiration (ETo) and crop evapotranspiration (ETc) provide valuable information about the water 

requirements of tomato crops (Kizza et al., 2016). The N-sufficiency index, which measures nitrogen availability 

and utilization efficiency in plants, is another important plant-specific variable for yield prediction, as highlighted 

by Alordzinu et al. (2021). Additionally, dry matter accumulation, reflecting overall biomass production, is closely 

linked to tomato fruit yield (El-Labad et al., 2019). Furthermore, canopy water content, an indicator of plant water 

status, provides insights into the physiological response of tomato plants to deficit irrigation and its impact on 

yield, as explored yield (Alordzinu et al., 2021; Elsherpiny 2023; Kamara et al., 2023). 

Predicting crop yield stands as a pivotal task in today's landscape for policymakers and farmers, crucial for 

ensuring food security and sustainability. Yet, this endeavor poses formidable challenges due to the intricate 

interplay among soil, plant, and environmental factors that influence crop productivity (Khaki and Wang 2019). 

Traditional methods like crop growth models and statistical analyses struggle to adapt to the ever-changing biotic 

and abiotic influences on crop output (Lobell and Burke 2010). Moreover, these conventional models demand 

copious amounts of data encompassing soil composition, climate patterns, crop specifics, and agricultural 

practices, along with substantial user expertise to calibrate the model accurately, as noted by Shahhosseini et al. 

(2021). Thankfully, the advent of machine learning (ML) in agriculture has ushered in a revolutionary and refined 

approach to surmount the constraints inherent in crop forecasting across varying environmental contexts, a 

development extensively discussed (Sridhara et al., 2023).  The application of computational models in ML has 

brought about a revolutionary transformation in agricultural practices, enabling a deeper understanding of crop 

production dynamics and facilitating optimal resource management. Among the various ML techniques, artificial 

neural networks (ANNs), decision trees, and random forests have emerged as formidable tools capable of capturing 

intricate relationships between input variables and output responses, as demonstrated by Cedric et al. (2022) and 

López-Aguilar et al. (2020). By incorporating both climate and plant-specific variables, these models offer a 

comprehensive and holistic approach to accurately forecast crop yield, thereby enhancing the precision of 

predictions in agricultural contexts. 

This innovative approach paves the way for predicting the yield of cultivated crops solely based on existing data. 

Such a methodology holds the promise of facilitating informed decisions regarding the selection of agricultural 

technologies, enhancing cropland management practices, assessing future production potential, and crafting 

climate-smart adaptation strategies to bolster food security.  With this background, this study aims to (a) investigate 

the effects of water stress on some biophysical parameters and tomato yield under different irrigation regimes; (b) 

coupling plant variables with climate variables using ANNs, decision trees, and random forests to improve yield 

prediction under deficit irrigation regimes; and (c) comparing the predictive abilities of these models for tomato 

yield under deficit irrigation regimes to determine the best model. 

2. Material and Methods 

2.1 Experimental site 

Field experiments were conducted for two consecutive spring growing seasons during 2022 and 2023 on a private 

farm at Talkha, Dakahlia, Egypt. The farm is located at 31.09° N, 31.38° E, and with an elevation of 17 meters. 

The experimental soil was classified as sandy clay in texture. It had a maximum rain infiltration rate of 30 mm/day. 

2.2 Experimental irrigation system 

The layout of the drip irrigation network is shown in Fig. 1. It includes a control head comprising a centrifugal 

water pump, a disk filter, a pressure gauge, control valves, and a Venturi-type injector. The main line consists of 

polyethylene (P.E.) pipes with a diameter of 75 mm. The sub-main line is made of P.E. pipes with a diameter of 63 

mm. Lateral lines are also made of P.E. and have a diameter of 16 mm. Built-in emitters are used with an average 

discharge rate of 6 L/h at an operating pressure of 1 bar. The beginning of each lateral line was provided with a T-

shaped 16 mm plastic valve to control the irrigation depth at the desired level for different irrigation treatments. 

The end of each lateral line was closed by an end cap. A drip irrigation system was constructed and tested before 

being used in the experimental location using equation (1), according to Ella et al. (2013). The distribution 

uniformity (DU) was estimated to be 92%. 

 

DU =
average of the lowest quartile

the average of all readings
∗ 100%                (1) 



 INTEGRATING CLIMATE AND PLANT VARIABLES WITH MACHINE LEARNING MODELS TO FORECAST TOMATO …  1659 

Egypt. J. Soil Sci. 64, No. 4 (2024) 

 

Fig. 1. The layout of experimental design for the different irrigation treatments. 

2.3 Tomato plant, agronomic practices, and irrigation regimes 

The cultivation of 'Gs12 F1' hybrid tomato seeds embarked on February 23rd after the completion of the initial 

growth phase, culminating in harvest on June 17th. The subsequent planting season commenced on March 3rd, 

concluding with harvest on June 25th. The entire growth cycle spanned 150 days, segmented into four distinct 

stages: initial (35 days), developmental (39 days), middle (46 days), and late (30 days). Throughout these stages, 

crop coefficients (Kc( were meticulously observed at 0.38, 1.10, 1.10, and 0.65, respectively, as outlined by 

Noreldin et al. (2014). Drip irrigation was employed to nourish the tomato plants. The experimental setup utilizing 

a randomized complete block design with four replicates to mitigate spatial variability. Plant spacing within rows 

was maintained at 0.4 m. The lateral line spacing stood at 1.2 m. Each plot covered an area of 10.8 m2 (9 m in 

length by 1.2 m in width). Irrigation commenced 15 days post-transplanting to ensure seedling survival. It 

continued throughout the growing season, except for the final 10 days when irrigation ceased. Various irrigation 

regimes, representing 100%, 75%, and 50% of the full irrigation requirements (FIR), were administered to 

investigate its impacts on biophysical parameters and tomato yield. Fertilizer applications adhered to the guidelines 

set forth by the Egyptian Ministry of Agriculture. All treatments receiving 357 kg/ha of nitrogen (N) in the form 

of urea (46.5% N), 60 kg/ha of phosphorus (P) as phosphoric acid (85% P2O5), and 238 kg/ha of potassium (K) as 

potassium sulphate (50% K2O). The fertilizer was applied through the drip irrigation system utilizing a venturi 

injector over the course of the two growing seasons. 

2.4 Crop evapotranspiration (𝐄𝐓𝐜) 

The reference evapotranspiration (ETo) values were calculated daily using the FAO Penman-Monteith equation 

(2), as outlined by Allen et al. (1998). The CROWAT model was employed for this calculation, according to Gabr 

(2022). Additionally, the crop evapotranspiration (ETc) values were calculated by multiplying ETo by the crop 

coefficient (Kc) for each growth stage, using equation (3), also based on Allen et al. (1998). 

ETo =
0.408∆(Rn − G) + γ(

900
T + 273

) ∗ U2(ea − ed)

[∆ + γ(1 + 0.34U2)]
               (2) 

Where: ETo: Reference evapotranspiration (mm/day); Rn: Net radiation at crop surface (MJ/m2.day); G: Soil heat 

flux (MJ/m2.day); T: Average temperature (°C); U2: Wind speed measured at 2 m above ground (m/s); ea − ed: 

Vapor pressure deficit (kpa); ∆: Slope vapor pressure curve (kpa/°C); γ: Sychometric constant (kpa/°C). 
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ETc = ETo ∗ Kc                                                             (3) 

Where: 

Kc:  Crop coefficient (dimensionless). 

ETc:  Crop Evapotranspiration (mm/day). 

 

2.5 Irrigation water applied 

The irrigation water applied (IWA)  is defined as the amount to replenish crop water used for field capacity. It is 

calculated by the equation (4), according to Abdulhadi and Alwan (2021) for full irrigation requirements. The 

IWA was employed based on the three regimes: 100%, 75%, and 50% of the full irrigation requirements. 

 IWA =
dn ∗ Se ∗ Sm ∗ Kr

Ea
                                          (4) 

dn: The net depth computing using CROPWAT8.0 for full irrigation, mm. 

Se: Lateral spacing along the sub-main, m. 

Sm: Dripper spacing along the lateral, m. 

Ea: Irrigation application efficiency, (90%). 

Kr: wetted area factor, was estimated as 0.33 using the equation (5) according to YILDIRIM and BAHAR (2017): 

Kr =
Se

Sm
                                                                         (5) 

 

2.6 Calculating input variables for models 

Our study used two distinct groups of data to calculate input variables for different machine learning (ML) models. 

The first group encompassed the sum of data from the first day after transplanting (DAT) to 67 DAT for the first 

season and 68 DAT for the second season. On the other hand, the second group entailed the sum of data from the 

first day after transplanting to 93 DAT for both seasons. 

2.7 Climate variables  

The necessary meteorological data can be obtained by downloading it from the NASA POWER | Data Access 

Viewer website: https://power.larc.nasa.gov/data-access-viewer/. NASA POWER utilizes satellite observations, 

which can provide a broad view of global climate patterns. These observations contribute to the accuracy of the 

data, especially for regions with limited ground-based monitoring stations. Reanalysis datasets used in NASA 

POWER combine observations with numerical models to generate consistent long-term climate records. This 

approach enhances the accuracy and completeness of the data, as documented by Power (2022). The variables 

Growth Degree Days (GDD), Vapor Pressure Deficit (VPD), solar radiation, Total Sunshine Hours (N), Total 

Relative Humidity (TRH), and Reference Evapotranspiration (ETo) are climate variables. These variables describe 

the environmental conditions. It encompassed factors such as temperature, radiation, evapotranspiration, and water 

availability, which are crucial for plant growth and development. The Growth Degree Days (GDD), Vapor Pressure 

Deficit (VPD), Total Sunshine Hours (N), and Solar Radiation (Rs) were calculated according to the following 

formula: 

2.8 Growing degree days 

Growing degree days (GDD) is a valuable metric that quantifies the cumulative heat exposure experienced by 

plants throughout the growing season, aiding in the assessment of its growth and development. The calculation of 

GDD involved the utilization of equation (6), according to (Roberts et al. 2013). 

GDD = ∑(Tmean − Tb)

n

i=1

                                          (6)  

where GDD is the growing degree-day (ºC); Tmean is the mean air temperature (°C); Tb is the base temperature for 

tomato grown under open-field conditions  = 7 °C, according to Abdalhi et al. (2020). 

https://power.larc.nasa.gov/data-access-viewer/
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2.9 Vapor pressure deficit 

Vapor pressure deficit (VPD) represents the disparity between the moisture content present in the air and its 

saturation point. It indicates the capacity of the air to hold moisture. This essential metric exhibits an exponential 

correlation with temperature. As emphasized by Roberts et al. (2013), elevated VPD values reflect increased water 

demands, which are of paramount importance for optimal photosynthesis. The calculation of VPD involved the 

utilization of equation (7), according to Roberts et al. (2013). 

VPD = e
(

17.269Tmax
237.3+Tmax

)
− e

(
17.269Tmin
237.3+Tmin

)
                      (7) 

Where: VPD: Vapor pressure deficit (ºC); Tmin and Tmax are the daily minimum and maximum temperatures (°C), 

respectively. 

2.10 Total sunshine hours (N) 

The total sunshine hours (N) can be calculated using the equation (8), as provided by Duffie and Beckman (1980). 

N = (
2

15
) arccos(− tan(δ) tan(φ))                       (8) 

In this equation, φ represents the latitude of the study site, and δ corresponds to the solar declination angle. The 

solar declination angle (δ) can be obtained using the equation (9), as detailed by Duffie and Beckman (1980). 

δ = 23.45 sin(0.9863(284 + n))                           (9) 

Where, n denotes the number of days from the 1st of January. 

2.11 Solar radiation 

The solar radiation (Rs) can be calculated by equation (10), according to Allen et al. (1998). 

Rs = KRs ∗ (Tmean)0.5 ∗ Ra                                     (10) 

Where: Rs: solar radiation (MJ m-2 d-1); Ra: extraterrestrial radiation (MJ m-2 d-1); Tmean: the daily mean 

temperatures (°C); KRs: adjustment coefficient (°C-0.5) for ‘interior’ locations, where land mass dominates and air 

masses are not strongly influenced by a large water body, KRs ≅ 0.16. 

The extraterrestrial radiation (Ra) can be obtained using the equation (11) according to Allen et al. (1998). 

Ra =
Rso

(0.75 + 2 ∗ 10−5 ∗ z)
                                    (11) 

Where: z: elevation above sea level (m); Rso: Clear-sky shortwave radiation (MJ m-2 d-1). 

2.12 Plant variables 

The variables canopy water content (CWC), dry matter accumulation (DMA),  N-sufficiency index (NSI), and 

Crop Evapotranspiration (ETc) are plant-specific variables. These variables are directly linked to the physiological 

characteristics and growth of the plant. Measurements for these variables were conducted during both the flowering 

stage (67 days after transplanting [DAT] in the first season and 68 DAT in the second season) and the fruit-ripening 

stage (93 DAT for both seasons). For each treatment, measurements were taken from four plants, following its 

respective adopted formulas for accurate estimation. 

2.13 Canopy water content 

Canopy water content (CWC) refers to the proportion of water present in the plant canopy. CWC serves as an 

indicator of the plant's hydration level and transpiration rate. The calculation of CWC can be performed using 

equation (12), as outlined by Semananda et al. (2016). 

CWC = (
FW − DW

FW
) ∗ 100%                                 (12) 

CWC: represents the canopy water content, %. 
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FW: corresponds to the fresh biomass weight of the plant canopy, gm. 

DW: denotes the dry biomass weight of the plant canopy, gm. 

2.14 Dry matter accumulation 

After examining the SPAD values, the dry matter accumulation (DMA) weight was estimated for the same plants 

following the procedures described by Semananda et al. (2016). These plants were carefully cut and subjected to 

dehydration in an oven set at 105 °C for a period of 24 hours. This drying process ensured the removal of any 

moisture present in the plants. Subsequently, the dried plants were weighed using an electronic balance. 

2.15 N-sufficiency index 

Leaf relative chlorophyll content was assessed using a handheld Konica Minolta SPAD 502 chlorophyll meter. 

SPAD readings were conducted on the most recent fully expanded leaf. The readings were taken at a specified 

position of leaf approximately midway between the leaf edge and the midpoint of the leaf, as suggested by Bai 

and Purcell (2018). The equation (13) was employed to convert the SPAD data into an N-sufficiency index, 

according to Bausch et al. (2004). This conversion allows for a standardized assessment of nitrogen sufficiency 

in plants. 

NSI =
SPADtarget

SPADreference
                                                 (13) 

2.16 Tomato fruit yield data 

To gather yield data, 8 plants per treatment were randomly chosen and marked for identification. These designated 

plants were consistently utilized for yield measurements during each pick. Tomato were picked twice, first at 109 

and 115 days after transplanting (DAT), and then at 107 and 115 DAT in both the 2022 and 2023 seasons. The total 

yield of tomato fruits for each treatment was computed by averaging the weights obtained from four replicates, 

quantified in tons per hectare. 

2.17 Machine learning methods for tomato yield prediction 

Three machine learning (ML) models were developed namely, an artificial neural network (ANN), a random forest 

(RF), and a decision tree (DT). These models were created using the Python scikit-learn library and Spyder 

software to prognosticate tomato yield under deficit irrigation conditions, as shown in Fig 2. The input variables 

for these models encompassed plant and climate data. The dataset was randomly partitioned into training (70%) 

and testing (30%) subsets a strategy in line with the methodologies of with a fixed random state of 0. This method 

was employed to regulate randomness and sampling variables during the node-splitting process. Numerous studies 

have employed analogous methodologies in comparable settings, as evidenced by prior research (Cedric et al. 

2022). Hyperparameters were predefined before the model training phase. It is crucial for determining model 

performance. A 5-fold cross-validation approach in conjunction with the grid-search method within the scikit-learn 

library was employed on the training dataset. It was used to optimize the performance and generalization 

capabilities of the three ML models. This method facilitated the exploration of diverse hyperparameter 

combinations. The model exhibiting the most optimal performance was selected based on the lowest RMSE and 

the highest R² value. 

2.18 Artificial neural network (ANN) 

ANN models were developed consisting of input neural layer, hidden neural layers, and output neural layer. The 

neurons known as perceptron are similar to multiple linear regression. Stochastic gradient descent (SGD) is chosen 

as the optimization method, as indicated in equation (14). It is employed to iteratively adjust the connection weights 

and minimize the discrepancy between the predicted and actual values, as described by Oymak (2019). The 

hyperparameters that need tuning include the number of neurons in each layer which ranged from 2 to 10. The 

number of hidden layers, which ranged from 1 to 5. Also, the activation functions that are shown in Table 1. The 

structure of an ANN is typically determined through experience and testing, as mentioned by Mijwel (2021). 

Ɵj+1 ≔ Ɵj − ⍺. (Ya
(i) − Yp

(i)). xj
(i)                        (14) 
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Ɵj+1: Weights of next iteration, Ɵj: Weights of current iteration; ⍺: Learning rate; xj
(i): input feature; Ya

(i): Actual 

value; Yp
(i): Predict value. 

Table 1. Activation Function, as stated by Sharma et al. (2017). 

Name Equations 

Hyperbolic Tangent (Tanh) f(x) =
(ex − e−x)

(ex + e−x)
 

Logistic (Sigmoid) f(x) =
1

1 + e−x
 

Rectified Linear Unit (ReLU) f(x) = max (0, x) 

Linear (Identify) f(x) = x 

 

 

Fig. 2. Schematic diagram of the methodology presented in this study. 

2.19 Decision tree (DT) 

The decision tree algorithm is made up of leaf nodes, decision nodes, branches, and a root node. It is organized 

like a tree. The root node starts the tree. The decision nodes make decisions that decide the path, which moves 

from one node to another. The decision nodes end with the leaf nodes, Han et al. (2022). Regression rules are 

easily created using decision trees. Because the DT doesn't require parameter setting or domain expertise, it is 

appropriate for exploratory knowledge discovery. During training, hyperparameter optimization and the optimal 

parameters were used to create the top-level model Xia et al. (2017). Two-key hyperparameters including the 

maximum depth and criterion equation were taken into account during training to optimize the decision tree model. 

The maximum depth of the tree was varied from 1 to 10. The criterion used to judge the quality of a split. The 

criterion options were the mean squared error (MSE) and mean absolute error (MAE) methods (refer to equations 

13 and 14), as described by Ahmad et al. (2018). 

MSE =
∑ (Ya − Yp)2N

i=1

N
                                            (15) 

Input data 

(Climate and plant parameters)

Comparison of results

Hype-parameters 

Optimization 

Simulation models 
Sampling and Analysis

CWC

Model performance 

measurement

RF Model

Training from i = 1: i = t

Validation from I = t+1: i = N

Model  Output

Hyper-parameters 

Optimization 

No

Yes

NSI TY
DT ModelANN Model
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MAE =
∑ |Ya − Yp|N

i=1

N
                                              (16) 

2.20 Random forest (RF) 

Random forest is a widely used ML algorithm employed for classification or regression tasks. It utilizes a 

combination of multiple decision trees to enhance prediction accuracy. Its effectiveness has been demonstrated in 

various research domains, including crop prediction Abbas et al. (2020). A random forest comprises an ensemble 

of decision trees generated from random subsets of the available data. Three key hyperparameters, including the 

number of trees, maximum depth, and criterion function, were considered. The number of trees in the forest was 

varied from 1 to 20. The maximum depth of individual trees was varied from 1 to 10. The criterion functions were 

included the MSE and the MAE methods (refer to equations 13 and 14). By aggregating predictions from multiple 

trees, the random forest output is evaluated by averaging the results, as suggested by Breiman (2001). This 

ensemble technique significantly improves the overall performance and the model's ability to generalize to unseen 

data. 

2.21 Models’ evaluation 

The evaluation of the three models (ANN, RF, and DT) was conducted utilizing metrics including the R2 and the 

RMSE value, as detailed in equations (17) and (18). These metrics were instrumental in quantifying the variance 

between the actual values and the estimated values produced by the models. 

R2 =
∑(Ya − Yp)2

∑(Ya − Y̅)2
                                                     (17) 

RMSE = √
1

N
∑(Ya − Yp)2

N

i=1

                                    (18) 

Where: Ya, Yp, and Y̅: represents the actual value, predict value, and mean value, respectively. N: represent the 

number of data. 

2.22 Statistical Analyses 

The experiment was laid out in a randomized complete block design (RCBD) with four replicates. All collected 

data were subjected to analysis of variance (ANOVA) in order to examine the response of plant variables and 

tomato yield to different irrigation treatments. SPSS statistical software package   version 28.0 was used to 

analyze the data. Significantly different means were separated using Tukey post-hoc test at the P ≤ 0.05 level of 

probability. 

3. Result 

3.1 Plant variables 

Irrigation regimes started 15 days after transplanting (DAT) for tomatoes to ensure the survival rate of the 

seedlings. Following this, irrigation regimes were applied for the rest of growing season, with the exception of the 

last 10 days for the tomato crop before harvest, when irrigation was stopped. Before initiating the irrigation 

regimes, equal depths of ETc were added to each treatment during the first 15 days (53.01 mm in the first season 

and 75.65 mm in the second season). During the first season, the first group period received total ETc depths of 

367.40 mm, 288.80 mm, and 210.21 mm, corresponding to 100%, 75%, and 50% of FIR respectively. In the second 

group period of the same season, the tomato plants received 586.10 mm, 452.83 mm, and 319.56 mm for the 

respective regimes. Moving on to the second season, during the first group period, the tomato plants received total 

ETc depths of 448.10 mm, 354.99 mm, and 261.88 mm, corresponding to 100%, 75%, and 50% of FIR respectively. 

In the second group period of the same season, the tomato plants received 681.30 mm, 529.89 mm, and 378.48 

mm for the regimes, respectively. 

A one-way ANOVA was performed to compare the effect of deficit irrigation regimes on canopy water content 

(CWC), Dry Matter Accumulation (DMA), and N-sufficiency Index (NSI). A one-way ANOVA revealed a 

statistically-significant difference in average CWC according to deficit irrigation regimes (F(2)= 234.604, p < 
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0.0001) and ((F(2)= 736.055, p < 0.0001) during flowering and fruit ripening stages, respectively. A Tukey post-

hoc test revealed significant pairwise differences between 100% of FIR and 75% of FIR, with an average difference 

of 0.975 and 1.184% (p < 0.0001), between 100% of FIR and 50% of FIR, with an average difference of 4.20 and 

4.768% (p < 0.0001), and between 75% of FIR and 50% of FIR, with an average difference of 3.22 and 3.584% 

(p < 0.0001) during flowering and fruit ripening stages, respectively. The results depicted in Table 2 reveal that 

the highest CWC values were recorded when utilizing 100% of FIR (87.63 and 86.79%), while the lowest values 

were observed at 50% of FIR (82.95 and 82.57%). Comparatively, the 75% of FIR (86.46 and 85.81%) showed a 

slight reduction in CWC when compared to the 100% of FIR during flowering and fruit ripening stages, 

respectively. Also, a one-way ANOVA revealed a statistically-significant difference in average DMA according to 

deficit irrigation regimes (F(2)= 92.196, p < 0.0001) and ((F(2)= 315.438, p < 0.0001) during flowering and fruit 

ripening stages, respectively. A Tukey post-hoc test revealed significant pairwise differences between 100% of FIR 

and 75% of FIR, with an average difference of 25.51 and 19.53 gm/plant (p < 0.0001), between 100% of FIR and 

50% of FIR, with an average difference of 51.67 and 47.30 gm/plant (p < 0.0001), and between 75% of FIR and 

50% of FIR, with an average difference of 26.16 and 27.77 gm/plant (p < 0.0001) during flowering and fruit 

ripening stages, respectively. The findings presented in Table 2 highlight that the highest DMA weights were 

observed when utilizing 100% of FIR (104.32 and 103.51 gm/plant) during the flowering and fruit ripening stages 

in both seasons, respectively. Remarkably, when employing 75% of FIR, the DMA weights experienced reductions 

of 18.20% and 25.54% at the flowering and fruit ripening stages in both seasons, respectively. Furthermore, at 

50% of FIR, there was a more substantial decrease of 45.17% and 51.92% compared to the utilization of 100% 

FIR at the flowering and fruit ripening stages in both seasons, respectively. A one-way ANOVA revealed a 

statistically-significant difference in average NSI according to deficit irrigation regimes (F(2)= 149.442, p < 

0.0001) and ((F(2)= 168.927, p < 0.0001) during flowering and fruit ripening stages, respectively. A Tukey post-

hoc test revealed significant pairwise differences between 100% of FIR and 75% of FIR, with an average difference 

of 0.07 and 0.04 (p = 0.001), between 100% of FIR and 50% of FIR, with an average difference of 0.26 and 0.14 

(p < 0.0001), and between 75% of FIR and 50% of FIR, with an average difference of 0.19 and 0.18 (p < 0.0001) 

during flowering and fruit ripening stages, respectively. The findings observed in Table 2 highlight that during the 

flowering stage, the highest NSI values were recorded in 75% of FIR (1.01) for both seasons, followed by 100% 

of FIR (0.97) and 50% of FIR (0.84). Regarding the fruit ripening stage, the highest NSI values were observed at 

50% of FIR (1.18), followed by 75% of FIR (0.99) and 100% of FIR (0.92) in both seasons.  

Table 2. Canopy water content (CWC), dry matter accumulation (DMA), and N-sufficiency index (NSI) of tomato crop 

in both seasons under different irrigation regimes (50%, 75%, and 100%) of FIR. 

Plant Variables Regimes Flowering Stage Fruit Ripening Stage 

CWC (%) 

100% of FIT 87.63±0.44a 86.79±0.10a 

75% of FIT 86.46±0.38b 85.81±0.73b 

50% of FIT 82.95±0.50c 82.57±0.16c 

DMA (gm/plant) 

100% of FIT 104.32±5.57a 103.51±6.22a 

75% of FIT 85.34±4.73b 77.07±8.45b 

50% of FIT 57.20±3.26c 49.77±4.68c 

NSI (dimensionless) 

100% of FIT 0.97±0.02b 0.92±0.04c 

75% of FIT 1.01±0.01a 0.99±0.02b 

50% of FIT 0.84±0.02c 1.18±0.03a 

 

3.2 Climate variables 

In the first season, the first group exhibited Growth Degree Days (GDD) at 727.90 °C, Vapor Pressure Deficit 

(VPD) at 235.72 °C, Total Sunshine Hours (N) at 816.50 hours, Total Relative Humidity (TRH) at 4121.00, Solar 

Radiation (Rs) at 1508.27 MJ m-2 d-1, and Reference Evapotranspiration (ETo) at 327.43 mm. While, the second 

group data during the first season demonstrated GDD at 1185.80 °C, VPD at 375.13 °C, N at 1168.40 hours, TRH 

at 5475.00, (Rs) at 2329.67 MJ m-2 d-1, and ETo at 521.80 mm. Moving on to the second season, the first group 

data showed that the GDD was recorded at 954.55 °C, VPD at 275.49 °C, N at 846.5 hours, TRH at 3529.00, Rs 

at 1733.34 MJ m-2 d-1, and ETo at 400.17 mm. While, the second group data during the second season exhibited 

that the GDD was recorded at 1448.70 °C, VPD at 421.81 °C, N at 1189.30 hours, TRH at 4755.00, Rs at 2569.18 

MJ m-2 d-1, and ETo at 608.17 mm. 
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3.3 Tomato fruit yield 

A one-way ANOVA was performed to compare the effect of deficit irrigation regimes on tomato yield. A one-way 

ANOVA revealed that there was a statistically significant difference in mean tomato yield between at least two 

treatments (F(2, 51) = 464.252, p < 0.0001). The effect size, eta squared (η²), was 0.948, indicating a large effect. 

Tukey’s HSD post hoc test showed that the T100 scored significantly higher than both T75 (p = 0.0001, 95% C.I. 

= [17.47, 24.16]) and T50 (p = 0.0001, 95% C.I. = [38.88, 45.58]). The T75 scored significantly higher than the 

T50 (p = 0.0001, 95% C.I. = [18.07, 24.76]). These findings suggest that T100 leads to the highest tomato yield, 

followed by T75, and lastly, T50. The effect size confirms these differences are practically significant. Table 3 

presents the tomato yield values for both seasons. The highest tomato yield was 77.44 ton/ha and 75.50 ton/ha at 

100% of FIR, followed by 75% of FIR with yield of 57.42 ton/ha and 54.05 ton/ha. Conversely, the lowest yield 

recorded was 35.05 ton/ha and 33.40 ton/ha for 50% of FIR during first and second seasons, respectively. During 

both seasons, 75% of FIR resulted in a reduction in yield by 25.85% and 28.42% respectively, while 50% of FIR 

led to a decrease of 54.74% and 55.76% compared to 100% of FIR, during first and second seasons, respectively. 

Table 3. The effect of deficit irrigation on tomato fruit yield (ton/ha) in both season. 

Regimes First Season Reduction, (%) Second Season Reduction, (%) 

100% of FIT 77.44±3.76a 0 75.50±2.77a 0 

75% of FIT 57.42±5.67b 25.85 54.05±2.44b 28.42 

50% of FIT 35.05±6.19c 54.74 33.40±3.13c 55.76 

 

3.4 ML-models performance to predict tomato yield  

3.4.1 Tomato yield prediction using first group data 

The study, utilizing data from the first day after transplanting (DAT) to 67 DAT for the first season and 68 DAT 

for the second season, showcased the remarkable predictive capabilities of three machine learning (ML) models 

in forecasting tomato yield with impressive accuracy. Table 4 delineates the performance of various ML models 

in predicting tomato yield during both the training and testing phases, while Fig. 3 specifically illustrates the 

outcomes observed in the testing phase. During the training phase, the artificial neural network (ANN-TFY1) 

model attained an impressive R2 value of 0.96 and a RMSE of 3.45 ton/ha. Constructed with a single hidden layer 

comprising 8 neurons and utilizing the ReLU activation function over 500 iterations, as depicted in Fig. 4. The 

random forest (RF-TFY1) model outperformed the others, achieving an R2 of 0.97 and the lowest RMSE of 2.78 

ton/ha. This model, comprising 10 trees with a maximum depth of 4 and utilizing squared error as the criterion 

function, exhibited exceptional accuracy. In contrast, the decision tree (DT-TFY1) model displayed slightly lower 

performance, with an R2 of 0.95 and an RMSE of 3.81 ton/ha. The DT-TFY1 model, with a maximum depth of 2 

and employing squared error as the criterion function, showcased respectable predictive capabilities. Transitioning 

to the testing phase, all three models sustained commendable accuracy levels. The ANN-TFY1 model yielded an 

R2 of 0.95 and an RMSE of 3.98 ton/ha. The RF-TFY1 model achieved an R2 of 0.95 with an RMSE of 3.80 ton/ha, 

emerging as the top performer in terms of RMSE. On the other hand, the DT-TFY1 model yielded an R2 of 0.94 

and an RMSE of 4.15 ton/ha. This study conducted a one-way ANOVA to compare the performance of three ML 

models. The one-way ANOVA revealed that there was not a statistically significant difference in the performance 

of the three ML models during the training and testing phases. Nevertheless, these results do not detract from the 

overarching proficiency of the ML models in accurately forecasting tomato yields. Noteworthy is the exceptional 

performance of the RF-TFY1 model, which consistently registered the lowest RMSE values across both the 

training and testing phases. This underscores the RF-TFY1 model's exceptional capability in predicting tomato 

yields, despite the absence of statistically significant distinctions observed among the models. 

Table 4. ML models Performance for tomato yield prediction after training and testing using first group data. 

Models 
Training Testing 

R2 RMSE (ton/ha) R2 RMSE (ton/ha) 

ANN-TFY1 0.96*** 3.45 0.95*** 3.98 

RF-TFY1 0.97*** 2.78 0.95*** 3.80 

DT-TFY1 0.95*** 3.81 0.94*** 4.15 
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Fig. 3. Comparative Analysis of (a) Artificial Neural Networks (ANN), (b) Random Forest (RF), and (c) Decision Trees 

(DT) for tomato yield prediction (ton/ha) during testing using first group data. 

 

 

 

Fig. 4. ANN architecture for  tomato yield prediction using first group data. 
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3.4.2 Tomato yield prediction using second group data 

The research employed data spanning from the first day after transplanting (DAT) to 93 DAT across both seasons, 

showcasing the remarkable predictive capabilities of three machine learning (ML) models in forecasting tomato 

yield with impressive accuracy. Table 5 details the performance of different ML models in predicting tomato yield 

during both the training and testing phases, while Fig. 5 specifically illustrates the outcomes observed in the testing 

phase. In the training phase, the artificial neural network (ANN-TFY2) model displayed marginally lower accuracy 

compared to the other models, yielding an R2 value of 0.95 and a RMSE of 3.68 ton/ha. Constructed with a single 

hidden layer comprising 6 neurons, employing the hyperbolic tangent (tanh) activation function, and undergoing 

500 iterations, as depicted in Fig. 6. The random forest (RF-TFY2) model outshone the others in the training phase, 

achieving an impressive R2 of 0.98 and the lowest RMSE of 2.39 ton/ha. Comprising 10 trees with a maximum 

depth of 4 and utilizing squared error as the criterion function, the RF-TFY2 model demonstrated exceptional 

accuracy. The decision tree (DT-TFY2) model also showcased high accuracy during training, achieving an R2 of 

0.96 and an RMSE of 3.40 ton/ha. With a maximum depth of 2 and employing squared error as the criterion 

function, the DT-TFY2 model exhibited robust predictive capabilities. Transitioning to the testing phase, all three 

ML models maintained reasonably good accuracy levels. The ANN-TFY2 model yielded an R2 of 0.94 and an 

RMSE of 4.33 ton/ha. The RF-TFY2 model achieved an R2 of 0.95 with an RMSE of 3.97 ton/ha. Similarly, the 

DT-TFY2 model presented an R2 of 0.95 and an RMSE of 3.75 ton/ha. The study conducted a one-way ANOVA 

to compare the performance of three ML models. The analysis revealed that there was not a statistically significant 

difference in the performance of the three ML models during both the training and testing phases. However, these 

results do not diminish the overall proficiency of the ML models in accurately predicting tomato yields. Of 

particular note is the outstanding performance of the RF-TFY2 model, which consistently demonstrated the lowest 

RMSE values during the training phases. The RF-TFY2 and DT-TFY2 models predict with nearly identical R2 

values on the testing phase. The consistency and accuracy of the RF-TFY2 model underscore its ability to forecast 

tomato yields, despite the lack of statistically significant differences observed among the models.

Table 5. ML models Performance for tomato yield prediction after training and testing using second group data 

Models 
Training Testing 

R2 RMSE (ton/ha) R2 RMSE (ton/ha) 

ANN-TFY2 0.95*** 3.68 0.94*** 4.33 

RF-TFY2 0.98*** 2.39 0.95*** 3.97 

DT-TFY2 0.96*** 3.40 0.95*** 3.75 
 

3.4.3 Tomato yield prediction using merged data from both groups 

The study involved three machine learning (ML) models, namely the artificial neural network (ANN-TFY3), 

random forest (RF-TFY3), and decision tree (DT-TFY3), showcasing its adeptness in predicting tomato yield with 

remarkable accuracy. Table 6 presents the performance of these ML models for predicting tomato yield in both 

the training and testing phases, while Fig. 7 specifically illustrates the outcomes observed during the testing phase. 

During the training phase, the ANN-TFY3 model achieved an R2 value of 0.95 and a RMSE of 4.00 ton/ha, 

underscoring its robust accuracy. Constructed with a single hidden layer comprising 9 neurons, utilizing the 

rectified linear unit (relu) activation function, and undergoing 500 iterations, as depicted in Fig. 8. The RF-TFY3 

model attained an R2 of 0.94 with an RMSE of 4.04 ton/ha during the training phase. Comprising 10 trees, with a 

maximum depth of 2 and employing squared error as the criterion function, the RF-TFY3 model showcased 

respectable accuracy. Similarly, the DT-TFY3 model reached an R2 of 0.95 with an RMSE of 3.91 ton/ha during 

training. With a maximum depth of 2 and utilizing squared error as the criterion function, the DT-TFY3 model 

demonstrated commendable predictive performance. Transitioning to the testing phase, all three models 

maintained good accuracy levels. The ANN-TFY3 model exhibited an R2 of 0.95 and an RMSE of 3.98 ton/ha, 

highlighting its efficacy in predicting tomato yield. The RF-TFY3 model obtained an R2 of 0.95 and an RMSE of 

4.00 ton/ha, showcasing consistent performance. On the other hand, the DT-TFY3 model yielded an impressive 

R2 of 0.96 and an RMSE of 3.59 ton/ha during testing, indicating its strong predictive capabilities. The study 

conducted a one-way ANOVA to compare the performance of three ML models. The analysis revealed that there 

was not a statistically significant difference in the performance of the three ML models during both the training 

and testing phases. However, these results do not diminish the overall proficiency of the ML models in accurately 

predicting tomato yields. Notably, the exceptional performance of the DT-TFY3 model stood out, consistently 

demonstrating the lowest RMSE values throughout both the training and testing phases. The consistency and 

accuracy of the DT-TFY3 model highlight its capability in forecasting tomato yields, despite the absence of 

statistically significant differences observed among the models. 
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Fig. 5. Comparative Analysis of (a) Artificial Neural Networks (ANN), (b) Random Forest (RF), and (c) Decision Trees 

(DT) for tomato yield Prediction (ton/ha) during testing using second group data. 

 

 

Fig. 6. ANN architecture for  tomato yield prediction using second group data. 
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Table 6. ML models Performance for tomato yield prediction after training and testing using both group data 

Models 
Training Testing 

R2 RMSE (ton/ha) R2 RMSE (ton/ha) 

ANN-TFY3 0.95*** 4.00 0.95*** 3.98 

RF-TFY3 0.94*** 4.04 0.95*** 4.00 

DT-TFY3 0.95*** 3.91 0.96*** 3.59 

 
Fig. 7. Comparative Analysis of (a) Artificial Neural Networks (ANN), (b) Random Forest (RF), and (c) Decision Trees (DT) for tomato 

yield prediction (ton/ha) during testing using merged data from both groups. 
 

 
 

Fig. 8. ANN architecture for  tomato yield prediction using merged data from both groups. 
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4. Discussion 

4.1 Plant variables 

The results depicted in Table 2 reveal a clear relationship between different irrigation regimes and CWC. It was 

observed that reducing the amount of applied water led to a decrease in CWC. These findings are consistent with 

the studies conducted by Alordzinu et al. (2021). Also, Significant variations in the N-sufficiency Index (NSI) 

values for tomato plants under different irrigation regimes during the flowering and fruit ripening stages, as 

presented in Table 2. Notably, during the flowering stage, the NSI values peaked at 75% of FIR for both seasons, 

followed by 100% of FIR and 50% of FIR. The impact of water stress on chlorophyll, the primary pigment crucial 

for photosynthesis, was apparent. Plants under stress exhibited decreased chlorophyll content due to severely 

reduced CWC, leading to lower NSI values, as seen in the case of 50% of FIR. Conversely, a slight reduction in 

CWC could concentrate chlorophyll content in specific leaf areas, resulting in higher NSI values, exemplified by 

75% of FIR. These results corroborate Sarker et al. (2020) findings that high deficit irrigation reduces NSI values 

during the flowering stage. Transitioning to the fruit ripening stage, the highest NSI values were observed at 50% 

of FIR, followed by 75% of FIR and 100% of FIR in both seasons. These results align with Màtè and 

SZALÓKINÉ ZIMA (2020), emphasizing that NSI values rise with increasing water stress during fruit ripening. 

Conversely, NSI values decreased in the full irrigation treatment due to its promotion of intensive photosynthesis, 

ultimately enhancing tomato yield. Moreover, the findings in Table 2 underscore the substantial influence of 

different irrigation regimes on DMA during the flowering and fruit ripening stages in both seasons.  The observed 

reductions in DMA can be attributed to the adverse effects of water stress, which hindered photosynthetic processes 

due to decreased plant water and chlorophyll content, ultimately leading to a decrease in the accumulation of dry 

matter. These results align with previous studies conducted by El-Labad et al. 2019), which similarly reported 

that the full irrigation regimes yielded the highest DMA weights for tomato crops when compared to other deficit 

irrigation approaches. 

Lower CWC signifies water stress, leading to decreased photosynthetic activity and poor plant health. Reduced 

chlorophyll (NSI values) limits photosynthesis efficiency, resulting in stunted growth and fewer flowers and fruits, 

which are crucial for yield. Additionally, lower DMA indicates diminished overall health and nutrient 

accumulation, correlating with reduced yield, as plants with insufficient biomass struggle to support fruit 

development and maturation. Therefore, accurately detecting plant variables is crucial for optimizing crop yield. 

Previous studies conducted by López-Aguilar et al. (2020) have demonstrated that it is possible to predict crop 

yield by evaluating the total accumulation of dry matter during the early growth phase. These studies highlight the 

significance of understanding and monitoring plant variables that have a direct correlation with tomato yield. By 

focusing on these variables, farmers can enhance their ability to predict and improve tomato crop productivity. 

4.2 Climate variables 

Our results have valuable insights into the relationship between climatic conditions, plant variables, and tomato 

fruit yield during different seasons. The second season experienced slightly severe conditions, characterized by 

higher values in GDD, VPD, N, and Rs, which likely contributed to slightly decreased tomato fruit production as 

well as increase in ETo values by increasing evaporation rates compared to these values in the first season. 

Although these values increased during the second season than first season, it still indicates a reasonably favorable 

environment for tomato fruit production. These proper values improve photosynthesis, enhancing biomass and 

chlorophyll content (NSI values). Total relative humidity (TRH) helps maintain canopy water content and supports 

growth, positively influencing DMA and yield. These results are consistent with findings from studies conducted 

by Kizza et al. (2016). Extensive research conducted by Siebert et al. (2017) and Meng et al. (2017) has 

demonstrated the crucial role of these climatic parameters in determining crop yield. Temperature influences plant 

metabolism, growth rate, and flowering, while sunlight duration and solar radiation affect photosynthesis and 

energy availability for fruit development. By integrating historical climate data, such as temperature, sunlight 

duration, and solar radiation, with crop-specific models or algorithms, growers can forecast tomato yield with 

reasonable accuracy. This predictive capability enables them to anticipate potential challenges, plan resource 

allocation, and implement targeted management practices to maximize tomato fruit productivity Li et al. (2019). 

4.3 Tomato fruit yield 

The analysis of the tomato yield data demonstrated a highly significant impact of irrigation regimes (p < 0.0001). 

Water scarcity during the growth period diminishes yield due to reduced fruit weight and number, particularly 

during flowering stage, where plants are highly sensitive to water stress, leading to flower loss and subsequently 
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fewer fruits, as seen in the case of 50% and 75% of FIR. The outcomes of this study resonate with earlier research 

conducted by Djurović et al. (2016), and El-Labad et al. (2019), which collectively observed that augmenting 

irrigation practices had a favorable impact on vegetable growth, flowering, and the ultimate yield of tomatoes, as 

seen in the case of 100% of FIR. 

4.4 ML-models performance to predict tomato yield  

Tables 4-6 results suggest that the model may be overfit. Optimizing hyper-parameters were searched using the 

cross-validation approach to make sure our model did not learn excessively from the data. In order to perform 

cross validation, the dataset is divided into random sets (k-Folds). One set is designated as the test set, and the 

remaining sets are used to train the model. Every set that is being used as the test set goes through this procedure 

once more, and the final model is made using the average of the models. The machine learning model, a grid of 

hyper-parameters, and the selected number of groups (K-Folds or cross-validation value) are entered into the 

GridsearchCV library, which then outputs the optimal estimator together with its optimal set of hyper-parameters. 

The data was divided using a 70/30 ratio, meaning that 30 percent was used for testing and the remaining 70 

percent was used as training data for cross validation. Tables 4-6 shows the result of the three ML models. There 

is a small gap between the training and test phases. Therefore, there is less risk of overfitting for this value. This 

is why we have chosen K-Folds = 5. The R2 between the predict tomato yield and actual tomato yield is plotted in 

three graphs (Figs. 3, 5, and 7). The data representation indicates a positive slope for the linear regression. Some 

values were observed to slightly deviate from the large mass. This may be due to the result of bias. Overall, the 

data representation indicates a linearity between the parameters and thus the possibility of a reduced value of the 

variance. 

The one-way ANOVA conducted revealed no statistically significant differences in the performance of the three 

models during the training and testing phases. However, it is crucial to consider the practical implications of the 

observed performance metrics. The random forest models (RF-TFY1 and RF-TFY2) achieved the lowest RMSE 

using the first and second groups data compared to the decision tree (DT-TFY1 and DT-TFY2) and artificial neural 

network (ANN-TFY1 and ANN-TFY2) models. Although these differences may not reach statistical significance, 

it can has substantial real-world consequences. In agricultural contexts, even a modest improvement in yield 

prediction accuracy can translate into significant economic benefits for farmers, enabling better resource allocation 

and optimized harvest planning. The superior performance of the random forest (RF-TFY1 and RF-TFY2) models 

can be attributed to its structure, which consists of 10 trees with a maximum depth of 4. This configuration allows 

the model to capture complex interactions and nonlinear relationships within the data more effectively than the 

decision tree (DT-TFY1 and DT-TFY2) models, which, with a maximum depth of just 2, may overlook important 

patterns. The capacity of the RF model to aggregate predictions from multiple trees enhances its robustness, 

making it particularly suited for the intricacies of agricultural data. This increased depth in trees can lead to better 

feature representation, improved predictive accuracy, and reduced risk of overfitting. Conversely, the artificial 

neural network (ANN-TFY1 and ANN-TFY2) models, constructed with a single hidden layer, demonstrated 

respectable performance but fell short of the RF model's accuracy. While the ReLU and tanh activation functions 

can model certain nonlinearities effectively, the relatively small number of neurons might restrict the model's 

expressiveness. The limited depth and small neuron count in the ANN may hinder its ability to model intricate 

relationships, particularly in datasets with significant variability, like agricultural yield data. Despite the decision 

tree (DT-TFY3), with a maximum depth of 2, achieving the lowest RMSE using merged data from both groups 

compared to the random forest (RF-TFY3) and artificial neural network (ANN-TFY3) models, the superior 

performance of the DT-TFY3 model can be attributed to its shallow depth, which allows it to focus on the most 

significant features. This allows it to focus on the most significant features. Such simplicity can lead to better 

generalization in certain contexts, particularly when the data exhibits clear, dominant patterns and there is a 

sufficient amount of data, as seen with merged data from both groups. Additionally, this configuration ensures that 

essential relationships are captured without being influenced by noise. Future research may benefit from exploring 

more sophisticated architectures or ensemble methods to further enhance predictive accuracy, ensuring that farmers 

have access to the best tools for informed decision-making. 

Machine learning techniques have proven to be highly effective in predicting crop yields, as demonstrated by 

several studies. Gholipoor and Nadali (2019) conducted research on pepper fruit yield prediction using ANN 

models. By incorporating plant variables such as plant height, fruit number, fruit water content, and canopy width, 

their study revealed that the ANN model achieved exceptional accuracy with an R2 value of 0.97 and an RMSE of 

0.018 kg/plant. In another study by Kuradusenge et al. (2023), data mining techniques were employed to predict 

future yields of potato and maize crops based on climate data. The researchers employed random forest, 
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polynomial regression, and support vector regressor models for analysis. The outcomes indicated that random 

forest performed exceptionally well, achieving R2 values of 0.88 and 0.82 for the potato and maize crop datasets, 

respectively, making it the superior model for early crop yield prediction. López-Aguilar et al. (2020) focused on 

simulating fresh fruit yield in tomato crops using an ANN model. The ANN model incorporated various plant 

variables such as leaf area, plant height, fruit number, and dry matter of leaves, stems, and fruits, along with growth 

degree days. The results exhibited a strong correlation between the predicted and actual tomato crop yields, with 

the ANN model achieving an impressive R2 value of 0.88. Cedric et al. (2022) combined climatic data and 

agricultural yields to create a powerful tool for predicting cassava yields using a DT model. The results of the 

research showed that the DT model exhibited exceptional performance, with a R2 reaching 94.1%. The findings 

from these studies, along with our own research, emphasize the importance of harnessing advanced modeling 

techniques such as ANN, RF, and DT models to improve crop yield predictions based on climate or plant variables. 

The successes observed in these studies, as well as our own, highlight the immense potential of ML models in 

accurately forecasting crop yields. By leveraging these techniques, we gain valuable insights that can be utilized 

to optimize agricultural practices and foster sustainable crop production.  

5. Conclusion 

In conclusion, this research developed tomato yield estimation models using artificial neural networks (ANN), 

random forest (RF), and decision tree (DT) techniques, based on climate and plant variables. The models 

successfully captured the relationships between input variables and tomato production under deficit irrigation 

conditions. The one-way ANOVA conducted revealed no statistically significant differences in the performance of 

the three models during the training and testing phases. However, even modest improvements in yield prediction 

accuracy can have substantial real-world consequences in agricultural contexts, translating into significant 

economic benefits for farmers through better resource allocation and optimized harvest planning. The RF model 

exhibited the highest accuracy, followed closely by the ANN and DT models when using data from the first and 

second groups. The increased depth of the RF model facilitates better feature representation and improves 

predictive accuracy while reducing the risk of overfitting. Notably, the DT model demonstrated the highest 

accuracy when applied to merged data from both groups. This performance can be attributed to its shallow depth, 

which enables it to focus on the most significant features, leading to better generalization in contexts where the 

data exhibits clear, dominant patterns and sufficient volume. These findings underscore the practicality and 

reliability of utilizing climate and plant variables in conjunction with machine learning models to effectively 

manage tomato crop production, particularly in scenarios of limited water availability for irrigation. The 

implications of this research extend beyond tomatoes; similar modeling approaches could be applied to other crops, 

enhancing yield predictions and resource management across various agricultural systems. However, potential 

challenges and limitations may arise when scaling these models for widespread use. Variability in local climatic 

conditions, soil types, and crop management practices can influence model performance, necessitating adaptations 

for different contexts. Additionally, data availability and quality can vary significantly, impacting the accuracy and 

reliability of the models. Future research should explore more sophisticated architectures or ensemble methods to 

further enhance predictive accuracy and address these challenges, ensuring that farmers have access to the best 

tools for informed decision-making across diverse agricultural landscapes. 
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