
 

*Corresponding author e-mail: ramady2000@gmail.com 

Received: 05/05/2024; Accepted: 20/05/2024 

DOI: 10.21608/EJSS.2024.287446.1765 

©2024 National Information and Documentation Center (NIDOC) 

Egypt. J. Soil Sci. Vol. 64, No. 3, pp: 1139 - 1164 (2024) 

 

Carbohydrate-Based Foods under Agroecosystems: Review on A Journey 

from Soil to In Vitro Engineered Digestion Models 
 
Attila Kiss 

1
, Hassan El-Ramady

2
, and József Prokisch 

3 

 
1 
Faculty for Agro and Food Sciences, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, 

Hungary 
2 
Soil and Water Dept., Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt 

3
 Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, 

 

Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, 

Hungary 

 

OIL is a vital component in the agroecosystem that can control the forming and decomposition of 

carbohydrates through  soil microbial activity. Carbohydrates are an essential part of our diet that 

can supply our bodies with more than half of human needs from energy. Carbohydrates also  

contribute to solving the global food crisis by supplying humans and animals with carbohydrate-based 

foods under different agroecosystems. This review focuses on the fantastic journey of carbohydrates 

in the agroecosystem, which starts from the soil as a  leadingcentral pool for carbon sequestration and 

carbohydrates forming by plants, the practical microbial activities on carbohydrates, and the role of 

carbohydrates against climate change. This journey continues after forming carbohydrates by 

cultivated plants or their microbial decomposition till their consumption by humans/animals using the 

in vitro engineered digestion models. This journey can also show some applications of carbohydrates 

in different sectors such as food, ecology, pharma, therapeutics, and agriculture. Due to the 

importance of carbohydrate-based foods for human health, it is a crucial issue to present in vitro 

digestion models of such macro-molecules. Further studies on carbohydrates are needed on many 

global issues, including climate change, such as loss of soil fertility, soil erosion, and carbohydrate-

based agro-biotechnology. 

Keywords: Digestive model, agricultural systems, human health, hydrogels, in vitro digestion, 

climate change, carbon sequestration, pharma. 

 

1. Introduction 

 

Carbohydrates are t, accountingfor 55 to 80% of total 

daily energy (Tan et al., 2023). Carbohydrate-based 

foods are  components, additives, and ingredients acting 

as prebiotics, having nutritional value andorganoleptic 

properties (Gerschenson et al., 2022). The primary  

carbohydrate sources are vegetables, fruits, grains, and 

animal sources, including dairy products, including 

yogurt, cheese, and milk (Rozi et al., 2023). There are 

two groups of non-digestible carbohydrates: lignin, 

cellulose, hemicellulose, and pectin, whereas the 

digestible group involves non-fiber carbohydrates, 

starch, and organic acids (Kaushik et al., 2022). 

Concerning the horticultural commodities, the Carb 

content differs from less than 1.0 to up to more than 

60%. This previous content in fruits and vegetables can 

contribute to and control these commodities color, 

flavor, nutritional value, and texture (Yahia et  al., 

2019). Several fruits and vegetables have nutritional and 

health benefits due to many dietary components along 

with Carbs such as fiber, ascorbic acid (vitamin C), and 

flavonoids (Yahia et al., 2019).  

Carbohydrates are organic compounds containing 

carbon derived from plants and animal foods in 

different agroecosystems. The flow of varying 

carbohydrate sources is governed by the microbial 

metabolism and enzyme activities within and between 

these agroecosystems (Low et al., 2023). Chemical and 

biological processes of this flow are controlled by the 
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carbohydrate-active enzymes (CAZymes), which may 

include biosynthesis/ glycosylation, photosynthesis, 

digestion/ saprotrophy for improving C-sequestration, 

and soil fertility (Low et al., 2023). CAZymes can be 

classified into five different enzyme classes: 

carbohydrate esterases, polysaccharide lyases, glycoside 

hydrolases, glycosyl transferases, and auxiliary 

activities (Wardman et al., 2022). Many studies focused 

on these enzymes from different points of view, such as 

fermented dairy and vegetable products (Liang et al., 

2023), animal feed (Plouhinec et al., 2023), mycorrhizal 

symbioses (Gong et al., 2023), composting (Chen X et 

al., 2023; Santos-Pereira et al., 2023), and agro-wastes 

(Ramanaiah et al., 2023; Singh et al., 2023).  

Carbohydrates can be digested through a breakdown in 

the mouth by salivary amylase, then throughout the 

digestive system, and finally, the monosaccharides are 

absorbed into the human bloodstream, increasing the 

sugar level in the blood. What is the carbohydrate 

digestive model? Why do these models  need to be used 

in many studies? The carbohydrate digestive model is a 

method by which the human digestive process could be 

explored, predicted, and analyzed by simulating fluid 

flow and absorption processes of glucose in the human 

small intestine (Karthikeyan et al., 2021). Generally, ed 

by studying different items, mainly the physical and 

composition form of the human digestive process. 

There are three main methods for analyzing the 

digestive process in food products involving an in vivo 

feeding approach using human volunteers (Karthikeyan 

et al., 2021), advanced computational models (Caillet et 

al., 2023), and in vitro models (Luo et al., 2024).  

Therefore, this  review will concentrate on 

carbohydrate-based foods, how and where they can be 

formed, the starting processes of these compounds, the 

role of soil during these processes, carbohydrates and 

the global food crisis, and carbohydrate-based foods in 

agro-ecosystems. Carbohydrate-based foods and human 

health will also be discussed, referring to how-

carbohydrate diet and many human diseases. The 

carbohydrate-based food matrix, human digestive 

system, and in vitro digestion models are of great 

concern in the current study. 

2. Carbohydrates and soil 

Why  are carbohydrates  essential compounds? Why 

these organic constituents are and necessary for all 

living organisms? Does the forming of carbohydrates 

start from the soil? What is the crucial role of 

carbohydrates in soil carbon sequestration? 

Carbohydrates are organic compounds widespread in 

the biosphere, and consist of mainly C, O, and H atoms 

in proportions, according to the standard empirical 

formula (CH2 o) n, where n = 3 or more (Figure 1). The 

central carbohydrate-based plants include several 

vegetables, fruits, legumes, and cereal grains, which 

could be broadly classified as sugars and non-sugars 

(Kaushik et al., 2022).  Depending on the number of C-

atoms in the molecule, these sugars are divided into 

mono-, di-, tri-, tetra-, and poly-saccharides 

(Gerschenson et al., 2022). What is the relationship 

between soil and carbohydrates? There are direct and 

indirect impacts of soil on the forming and 

decomposition of carbohydrates t through soil microbial 

activity (Reuter et al., 2023).  

What is the main impact of soil carbon on the global 

climate change? Carbon in soil, and its behaviour, 

different transformations, and general cycle are needed 

to answer this question. Soil carbon is a  critical global 

issue due to its suggested impacts on climate change 

and vice versa (Puche et al., 2023). This interplay 

between soil carbon and climate change was 

emphasized in several studies which reported included 

the role of soil carbon sequestration for mitigation of 

climate change (Don et al., 2023), carbon farming (Paul 

et al., 2023), and their microbial decomposition 

(Mukhtar et al., 2023). The soil carbon might impact  

climate changes through the change inatmospheric CO2 

concentration and soil organic carbon (SOC), as 

presented in Table 1. It is worth that there is an urgent 

need for “tailoring farming practices” to maintain 

agricultural production and safeguardprotect soil carbon 

stocks (Puche et al., 2023). It is reported that the C-sink 

and source function of different vegetations depend on 

soil type,  C-sources, tree species composition, soil 

micro-organisms, and macrofauna (Devi and Lepcha 

2023). 
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Fig. 1. Carbon is an essential element for all living organisms through building many crucial compounds like 

carbohydrates. The main processes that happen to soil carbon include respiration, carbon sequestration, and 

carbon decomposition. The photo from https://www.freepik.com/free-vector accessed on December 13, 2023. 
 

Table 1. Different studies on the interplay between soil carbon and climate change. 
Soil conditions or 
cultivation system 

The main findings of the study Region or 
country  

Refs. 

Soil carbon stocks 
under grasslands 

A slight increase in temperature led to an increase in grassland 
productivity and reduced soil organic carbon (SOC) stocks. 

France Puche et al. 
(2023) 

Soil microbial 
community 
functioning and 
structure 

Elevated CO2 has different impacts on the structure of soil 
microbial community (mainly fungi/bacteria ratio) with potential 
interaction to mitigate or enhance each other's effects. 

General 
study  

Mukhtar et al. 
(2023) 

Soil carbon 
sequestration  

Terms of soil C sequestration, harmful emissions, SOC loss 
mitigation, SOC storage, and climate change mitigation should be 
revised among scientists and stakeholders again. 

General 
study 

Don et al. 
(2023) 

Soil carbon farming  Increasing SOC stocks in agricultural soil can remove CO2 from the 
atmosphere  to mitigate climate change.  

Germany  Paul et al. 
(2023) 

Soil organic carbon in 
dryland 

The buffering role of biocrust-forming lichens in modulating 
climate change by enhancing the accumulation of soil C 

Spain   Díaz-
Martínez et 
al. (2023) 

Microbial C-use 
efficiency (CUE) in 
grassland  

Deep-soil organic carbon and its availability can control microbial 
CUE under climate change across the soil profile by driving 
terrestrial biogeochemical cycles.  

China  Zhang Q et al. 
(2023) 

Soil carbon and 
nitrogen fractions in 
the tropics 

Soil C & N fractions and their ratios can control soil emissions of 
N2O, and the natural forest conversion significantly decreased 
emissions of soil N2O. In contrast, this conversion to a paddy field 
had no effects. 

China  Zhu et al. 
(2023) 

Potential of soil 
organic carbon 
sequestration 

Climate change is suggested to increase the loss in soil organic 
carbon 8.1 and 6.0 Mg C ha−1 for the business-as-usual and a crop 
rotation change scenario, respectively, by 2038, which is promoted 
by rotation of annual crops with perennial grasses.  

Denmark Gutierrez et 
al. (2023) 

SOC sequestration 
under grasslands 

The management of SOC-sequestration had ,more substantial 
impacts compared to soil type and climate under using 24 sites of 
grasslands by increasing fertilizer input and field traffic  

Germany Filipiak et al. 
(2023) 

Carbon sequestration 
rate and CO2 flux in 
forests 

The main factors that control C sink and its source function in 
forests include climatic variables, forest types, and edaphic factors; 
increased temperature and rainfall may change soil quality. 

India Devi and 
Lepcha 
(2023) 

Soil microbial activity 
under polar deserts 
and tundra 

Under polar deserts, soil microbial activities were more sensitive to 
temperature and moisture changes compared to soil C and N 
storage, which are not uniformly predictable there 

Antarctica  Khan and Ball 
(2024) 

https://www.freepik.com/free-vector
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How can carbohydrates reach the soil? The primary 

sources of carbohydrates in the soil involve the 

rhizodeposition or via manure, compost, or plant 

biomass in litter (Figure 2). Under terrestrial 

ecosystems, the decomposition of carbohydrates is 

important for C-sinks and water sources, which 

depend on microbiome abundance, soil properties, 

CAZyme abundance, and enzyme gene pathways 

(Xiong et al., 2023). This decomposition of 

carbohydrates could be achieved by certain 

CAZymes which involve the degradation of 

hemicellulose and glucan, besides many soil 

enzymes such as alpha-L-arabino-furanosidase, 

endo-beta 1,4-xylanase, and alpha-L-fucosidase 

(Xiong et al., 2023). Soil microbes can 

transform/degrade carbohydrates in soil organic 

matter (SOM) through their respiration and 

proliferation. Root exudates are an  essential 

sourceof carbohydrates in the soil rhizosphere 

because root exudates consist mainly of organic 

acids, and amino acids besides carbohydrates (Low 

et al., 2023).  

3. Carbohydrates and the global food crisis 

The global population reached  around 8.1 billion 

people in 2023, which is expected to be more than 

8.5 billion by 2030. The terrible increase in global 

population should meet the global food demand, 

which tends to rise faster than the global food supply. 

Global food needs are expected to increase from 42% 

to 70% in 2030 and 2050, respectively (FAO, IFAD, 

UNICEF, WFP, and WHO 2021). The Global food 

crisis, it is a real problem  that led to an increase in 

global hunger levels, which was extremely high in 

2021, including around 193 million people in 53 

countries under severe food insecurity (Rozi et al., 

2023). Thus, there is an urgent global need to 

strengthen global food security by increasing the 

production of staple food carbohydrates (Lin and 

Gómez-Maqueo 2023). Many reports were published 

on food crises in different places worldwide, such as 

Indonesia (Rozi et al., 2023), Singapore (Lin and 

Gómez-Maqueo 2023), Seri Lanka (Sooriyaarachchi 

and Jayawardena 2023), and Lebanon (Nakat et al., 

2023).  

Along with other macronutrients (proteins and fats), 

carbohydrates have a crucial role in food security. 

Producing food carbohydrates  using limited natural 

resources could be supported through the following 

methods: emerging novel foods, revalorization of by-

products, alternative crops, and food production 

using innovative technology (Lin and Gómez-

Maqueo 2023). Traditional and non-conventional 

sources of carbohydrates in the human diet are a 

global issue that researchers attempt to find 

alternatives to carbohydrate sources, including novel 

dietary carbohydrates (Traughber et al., 2021), 

microalgae bioactive carbohydrates (Gouda et al., 

2022), an alternative to unconventional grain crops 

such as millet, amaranth, and quinoa (Lin and 

Gómez-Maqueo 2023), as presented in Figure 3. 

Many alternative carbohydrates have an acceptable 

potential for human consumption, such as monkey jack 

(Artocarpus lakoocha Roxb.), breadfruit (Artocarpus 

altilis S. Park. Fosb), wood apple (Limonia acidissima 

L.), gumihan (Artocarpus sericarpus), marang fruit 

(Artocarpus odoratissimus), and nam-nam (Cynometra 

cauliflora) (Lin and Gómez-Maqueo 2023). The 

carbohydrate quality can be evaluated through the four 

main criteria: whole grain intake (content), dietary fiber  

intake, free sugar intake, and glycemic index (Tan et al., 

2023). There is a need for a dietary guideline scoring 

system regarding carbohydrate food quality 

(Drewnowski et al., 2022). Based on the available 

natural resources (water, soil, etc.), the production of 

carbohydrates might differ in different countries  

worldwide.  
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Fig. 2. Definition of carbohydrates and different types supplying with some examples (adapted from Ramaprabha et al. 2024). 
 

 
Fig. 3. Suggested strategies for the traditional and non-traditional sources of carbohydrates for food security (sources: 

Traughber et al., 2021; Gouda et al., 2022; Lin and Gómez-Maqueo 2023; Tan et al., 2023). 
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4. Carbohydrates flow in agroecosystems 

This section presents the carbohydrates in agriculture, 

forms in soil, flow in different agro-ecosystems, and 

sources. In soil, there are three primary forms of 

carbohydrates: (1) the soluble free sugars in the soil 

solution, (2) the complex polysaccharides (mainly 

cellulose and hemicellulose) and (3) different sizes and 

shapes of polymeric molecules, which are attached 

firmly to colloidal particles of clays and humic 

substances (FAO 2005). Along with the previous forms 

of carbohydrates, different sources of carbohydrates in 

soil are quickly broken down by various soil micro-

organisms, including algae, bacteria, fungi, protozoa, 

and viruses (FAO 2005). Carbon in soil and air in the 

form of CO2 can be biosynthesized/adsorbed by plants 

during the photosynthesis process and metabolically 

formed into carbohydrates aa a wide array of mono-, 

oligo-, and poly-saccharides, as well as glycosylated 

biomolecules (Low et al., 2023). The flow of 

carbohydrates in the agro-ecosystems is involved in 

several topics such as (1) carbohydrates-based plant 

foods, (2) carbohydrates as a link of plant-microbe 

interactions, (3) carbohydrate-microbe interactions for 

soil fertility, (4) the role of microbes for conversion 

carbohydrates by honeybees, (5) dairy products and gut 

microbiomes, and (6) the consumption of different crop 

products under crucial decomposition by gut microbes 

(Butler et al., 2023; Chen Y et al., 2023; Low et al., 

2023). Carbohydrates also have a strong interplay with 

many global issues, including soil carbon sequestration 

(Filipiak et al., 2023), climate change (Díaz-Martínez et 

al., 2023), loss of soil fertility (Liu et al., 2023), soil 

erosion (Jing et al., 2023), United Nations of sustainable 

development goals (SDGs), and carbohydrate-based 

agro-biotechnology (Figure 4). 

 

 
Fig. 4. Carbohydrates have a distinguished journey through their flow in the agro-ecosystem, which may start by 

collecting CO2 from the air to build the carbohydrates by the photosynthesis process, then these organic 

materials might reach humans/animal or soil. This flow islinked with many global issues (adapted from Low et 

al., 2023). UN-SDGs: United Nations-Sustainable Development Goals. 

 

4.1 Carbohydrates and microbial activities 

Carbohydrate flow in the agro-ecosystems has many 

forms, including different agro-ecosystem 

compartments (soil, plant, farm animals, microbes, and 

human). Microbial communities govern these forms as 

fundamental carbohydrate-microbe interactions (Low et 

al., 2023). Concerning these interactions, the microbial 

decomposition of different carbohydrate sources from 

plants, animals, and dairy products needs to be 
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emphasized (Huang et al., 2022; Low et al., 2023). 

Plant materials are subjected to decompose by soil 

microbes under different conditions, which mainly 

depend on the :diversity of plant and microbe, species 

and soil properties, and environmental conditions (Guo 

et al., 2023). Farming under a forest or cropping system 

is considered a limited factor in microbial activity and 

carbohydrate decomposition (Li et al., 2022). Under the 

forest system, it is found that carbohydrate metabolism 

by bacterial functional groups was negatively correlated 

with N and P availability in soil. In contrast, pathogenic 

and saprotrophic fungal groups showed a negative 

correlation with the dominance of forest tree species 

(Guo et al., 2023).  

 

Understanding microbial-carbohydrate interactions are 

important through more focus on the biochemistry of 

the processes by which carbohydrates were formed, 

dismantled, elaborated, and consumed by individual and 

microbe communities (Low et al., 2023). These 

processes are governed by the active microbial enzymes 

(CAZyme) during carbohydrate decomposition and 

their respective substrates of carbohydrates. Based on 

their catalytic mechanisms, these CAZymes could be 

classified into the following classes: carbohydrate 

esterases (Puchart and Biely 2023), glycoside 

hydrolases (Miyazaki et al., 2023), glycosyl transferases 

(Sirirungruang et al., 2023), polysaccharide lyases 

(Pandey et al., 2023), and auxiliary activities (Wardman 

et al., 2022). The main organic fractions resulting from 

the decomposition of carbohydrates (compost or 

indigestible residues) in agro-ecosystems may include 

sugars, cellulose, hemicellulose, and pectins (Low et al., 

2023). Several suggested mechanisms were reported on 

the decomposition of carbohydrates, which depend on 

the kind of carbohydrate sources (plants or animals), 

conditions of the reactions, and type of enzymes, and 

the purpose of this reaction (Ren et al., 2023). The main 

general pathway of carbohydrate decomposition 

involves the metabolism of sucrose and starch, which 

mainly includes the “double displacement catalytic 

mechanism” in these reactions (Tashkandi and Baz, 

2023). For more details on CAZymes, they are assigned 

into classes (as a level 1) and families (as a level 2) and 

receive enzyme classification (EC) codes (as a level 

EC), then deposited in CAZy (https://www.cazy.org/) 

and CAZypedia (https://www.cazypedia.org/) databases 

(Tashkandi and Baz 2023).  

 

4.2 Carbohydrates and soil carbon sequestration 

The journey of carbohydrates in agro-ecosystems is an 

exciting trip, which might start from collecting of 

carbon in CO2 form from atmospheric air through 

photosynthesis (Figure 4). Many steps can be noticed 

during this stage which, including storing carbon in the 

soil as a crucial process called carbon sequestration. A 

greater focus on soil organic matter (SOM), from 

different points of view, such as types, amounts, the 

decomposition rate, and biological activities in soil, 

could produce interesting findings that account more for 

carbon sequestration (Huang et al., 2023). Soil 

microbial community (SMC) is considered the main 

driver of the decomposition of organic matter to store C 

in soils for achieving soil carbon sequestration, which 

refers to the C-uptake of containing substances from the 

atmosphere and its storage in soil C pools 

(Bhattacharyya et al., 2022). Furthermore, the 

maintenance of soil ecosystem services, regulation of 

the turnover and delivery of nutrients, and the 

decomposition rate of SOM are mainly controlled by 

the structure and activity of SMC (Bhattacharyya et al., 

2022). A significant concern on SMC and its interplay 

with SOM can be noticed in the era of climate change 

for mitigating the atmospheric greenhouse effect 

(mainly raising the GHG emissions). This mitigation 

could be managed by enhancing the inherent soil 

quality through soil C-sequestration and reducing the 

accelerated greenhouse effects (e.g., CH4 from paddy 

rice cultivation) to counteract the adverse effects of 

emissions on agroecosystem (Das et al., 2023). What is 

the relationship between carbohydrates and soil carbon 

sequestration? This relationship has many features that 

can be concluded in the following points: 

1- The decomposition of carbohydrates (as SOM) 

should be achieved by the proper soil microbes in the 

rhizosphere, and these reactions have several benefits to 

both soil quality and microbial activity (Bao et al., 

2021), 

2- Plant root exudates consist of carbohydrates and 

amino acids besides organic acids, which can be 

exudated into the soil rhizosphere. Carbohydrates from 

the exudates of plant roots are labile and are quickly 

consumed by soil bacteria and fungi, enhancing the 

abundance and diversity of soil microbial populations. 

These exudates have a remarkable ability to change the 

soil microbiomes by releasing nutrients and supporting 

beneficial microbes for promoting plant growth (Vives-

Peris et al., 2020).  

3- Microbial-derived carbohydrates are considered 

digestible carbohydrates and are necessary for the 

degradation of SOM (Gunina and Kuzyakov 2022), and 

4- The efficient  soil fertility management needs a 

complete understanding of the interactions between 

carbohydrates and soil microbes during transforming 

SOM and its retention across different agricultural 

practices (Low et al., 2023). 

 

4.3 Carbohydrates and climate change 

Carbohydrates, as a kind of organic matter, have 

different scenarios of decomposition, which may result 

from some GHGs (CH4, CO2, and others) depending on 

the reaction condition. These gases and their emissions 

may lead to global warming and climate change. 

Therefore, the farming type that has different applied 

agrochemicals (mainly fertilizers, pesticides, and plant 

growth promoters) has potential impacts on soil 

https://www.cazy.org/
https://www.cazypedia.org/
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microbial activities (Raaijmakers and Kiers, 2022), 

which might lead to undesirable consequences (Jing et 

al., 2022). Climate change can cause different stress 

combinations, from flooding, drought, heat, pathogens, 

and pollutants,  impacting plant farming (Eckardt et al., 

2023a, b). These stresses directly and indirectly affect 

the microbiomes, which in turn may control the 

availability of carbohydrates in agroecosystems (Rivero 

et al., 2022). Several studies confirmed the responses of 

plants to climate change under different abiotic stresses 

(Chaudhry and Sidhu 2022; Zandalinas et al., 2022; Ali 

et al., 2023; Khan 2023; Leisner et al., 2023; Verslues et 

al., 2023).  

 

Why can climate change alter the carbohydrates in the 

agroecosystem?, soil is a principal pool for carbon 

sequestration (in the form of carbohydrates). This 

requires managing soil carbon through more 

understanding of the role of microbiomes in the 

assembling processes that impact the fate of 

carbohydrates in agroecosystems, for emitting as 

greenhouse gases or storing in soil (Anthony et al., 

2020). eduction of greenhouse gas emissions due to 

animal farming should be adapted through 

carbohydrate-mediated relationships with microbiomes 

for a better understanding of climate change (Low et al., 

2023). Due to the role of carbohydrate turnover in 

sequestering carbon in soils through soil microbial 

activities, carbohydrates need more and more 

understanding to provide their significant global 

impacts on climate change. This concept can be 

emphasized by carrying out the needed research on the 

digestion of carbohydrates in ruminants and other food 

animals to reduce greenhouse gases emitted during 

these processes (Low et al., 2023).  

 

Carbohydrates in soil are subjected to climate changes 

(mainly raising temperature and the elevated 

atmospheric CO2 concentration), besides other stresses 

(e.g., drought and salinity). These stresses can impact 

on the biological activity of soil microbes and cultivated 

plants by generating reactive oxygen species (ROS) 

with increased climatic variations (Chaudhry and Sidhu, 

2022). This global change opened a wide window 

necessary for exploring the natural phyto-microbiome 

species which can improve the productivity of stressful 

plants through secondary metabolite production, 

nutrient uptake, and resistance against pathogenicity 

and abiotic stresses with support the beneficial microbes 

(Khan 2023). The phyto-microbiomes or plant-

associated microbes are a group of archaebacteria, 

bacteria, fungi, and viruses which can mitigate abiotic 

stress through different mechanisms, including the 

production of phytohormones, antioxidants, bioactive 

compounds, detoxification of toxins and harmful 

chemicals, sequestration of ROS and other free radicals 

(Singh et al., 2023). Many studies reported on these 

plant-associated microbes and their role in agrifood 

tools (Nguyen et al., 2023), crop protection (Asad e al., 

2023), integrative plant pathology (Ruiz-Bedoya et al., 

2023), genome studies on plant-microbe interactions 

(Zhang H et al., 2023), microbiomes-mediated signal 

transduction in plants (Li J et al., 2023), plant 

endophytes for agro-eco-sustainability (Negi et al., 

2023), and medicinal plant-associated rhizobacteria 

under stress (Vaghela and Gohel, 2023). 

 

5. Applications of carbohydrates 

Carbohydrates have several applications in various 

fields of our life. Carbohydrate-based foods are 

considered the primary energy source in the human diet 

(Comerford et al., 2023). Regarding the applications of 

carbohydrate-based food or other sources of 

carbohydrates, there are several possible applications, 

including the nutritional, medicinal, pharmaceutical, 

and agricultural fields: 

1- Carbohydrate-based diet (Jo and Park 2023),  

2- Carbohydrate-based drugs and pharmaceutical 

applications (Tudu and Samanta, 2023; Silant'ev et al., 

2023),  

3- Carbohydrate-based gelators as drug delivery (Morris 

et al., 2021; Tyagi et al., 2023),  

4- Carbohydrates-based prebiotics (Gouda et al., 2022), 

5- Carbohydrate-based hydrogels for the therapy of 

many human diseases (Zhang Y et al., 2023), 

6- Carbohydrate-based therapeutics (Wang et al., 2021),  

7- Carbohydrate-based ionic liquids as suitable solvents 

for converting carbohydrate biomass (Marullo and 

D'Anna 2022),  

8- Synthetic carbohydrate-based vaccine components, 

as presented in the field of synthetic glycobiology 

(Hulbert et al., 2023),  

9- Carbohydrate-based bioactive molecules for human 

diseases (Bajad et al., 2021),  

10- Carbohydrate-based nanoparticles, as developed for 

drug delivery for brain tumors (Silant'ev et al., 2023),  

11- Carbohydrate-based nano gel formulations, as 

sensitized for the hypoxic tumors (Diaz-Dussan et al., 

2023), and,  

12- Carbohydrate-based adjuvants are sustained 

delivery systems (Garcia-Vello et al., 2020). 

The following sub-sections will highlight more focus on 

the food, pharma, and ecological sectors. 

 

5.1 Carbohydrates in the food sector 

Why the are carbohydrates essential in the field of the 

food industry? What are the main features of 

carbohydrates as a proper candidate in this field? 

Carbohydrates' rheological and functional 

characteristics support their applications in the food 

sector (Table 2). These desirable properties are helpful 

in food products, including sweetness, solubility, 

hygroscopicity, browning capabilities, the ability of 
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preventing the crystallization, coating capabilities and 

flavor encapsulation (Jokinen et al., 2023). In general,  

many different types of carbohydrates can be used in 

food applications, such as starch and their derivatives 

(Singh et al., 2024), carrageenan (Yahaya et al., 2023), 

agar (Cebrián-Lloret et al., 2024), polysaccharides or 

hydrocolloids (Pirsa and Hafezi 2023), alginate (Yan et 

al., 2024), cellulose (Janik et al., 2024), mannitol (Ma et 

al., 2023), chitin (Alimi et al., 2023) and chitosan (Qiu 

et al., 2024). Carbohydrate-based biopolymers, such as 

bio-based packaging, are well known for their 

applications in the food sector. These packaging 

processes offer biocompatibility and biodegradability, 

which can serve as alternatives for conventional non-

biodegradable polymers used as paper coatings 

(Ramaprabha et al., 2024). The use of carbohydrates as 

new food packaging materials has many features, 

including their sustainable nature and their limit 

destructive impacts on the environment compared with 

the single use of plastics (Janik et al., 2023). Applying 

polysaccharides (e.g., chitosan, starch, cellulose, and 

sodium alginate) as food packaging materials is  

essential, being their distinguished properties such as 

eco-friendly, economical, and prospective viable 

packaging alternatives (Janik et al., 2023). More 

information on the carbohydrates in the food sector can 

be found in Figure (5). 

 

 

Table 2. Some published studies on alginate and cellulose in food packaging applications. 

 

Carbohydrate

s 

Applied form Suggested aim of the applied carbohydrates in brief Refs. 

Alginate Gelatin-sodium alginate Producing the active packaging film of gelatin-sodium 

alginate for enhancing the quality and safety of meat as 

well as shelf life 

[1] 

Alginate Integrated with N-

functionalized carbon 

dots 

Using N-functionalized carbon dots for integrated with 

layered clay and alginate-based films for active food 

packaging by forming strong H-bonds with alginate and 

reducing the surface wettability 

[2] 

Alginate Sodium alginate 

mediated with leaf 

extract  

Applying sodium alginate as a biodegradable polymer has 

eco-friendly qualities and polymer membrane for food 

packaging application when mediated with Datura metal L 

leaf extract. 

[3] 

Alginate Gelatin-sodium alginate I was using gelatin-sodium alginate as a matrix 

biopolymer, cross-linking agent green tea extract as an 

active multilayer food packaging film was fabricated as an 

active ingredient. 

[4] 

Alginate Sodium alginate-

carboxymethyl 

cellulose/gluten 

Producing a film from sodium alginate-carboxymethyl 

cellulose with gluten blending to increase the mechanical 

strength and hydrophobicity of this film in food packaging 

[5] 

Cellulose  Gelatin hydrogel-ethyl 

cellulose 

Producing bilayer film consists of gelatin hydrogel-ethyl 

cellulose to adjust the humidity for active applied food 

packaging to prolong the shelf-life up to 7 days under 

ambient storage conditions. 

[6] 

Cellulose  Carboxymethyl 

cellulose and polyvinyl 

alcohol  

Producing active package film from polyvinyl alcohol and 

carboxymethyl cellulose incorporated with tamarind seed 

coat waste extracts to extend the shelf-life 

[7] 

Cellulose  Cellulose nano-

composite film 

Producing cellulose nanocomposite film from all-green 

pineapple peel for maintaining the quality of storage 

cherry tomatoes as a hydrophobic, high-performance and 

sustainable approach  

[8] 

Cellulose  Cellulose nanocrystal-

metal-organic 

framework 

Using a composite of cellulose nanocrystal-metal-organic 

framework as an advanced packaging of food 

[9] 

Cellulose  Cellulose-curcumin 

composite 

Producing cellulose-curcumin composite biodegradable 

film with high antibacterial activity to preserve the 

freshness of food products 

[10] 

Refs. [1] Elhadef et al. (2024) [2] Mao et al., 2023 [3] Chinnaiah et al., 2023 [4] Shan et al., 2023 [5] Thivya et al., 2022 [6] 

Shan et al. (2024), [7] Kuchaiyaphum et al., 2024, [8] Zhu et al., 2024, [9] Rui et al., 2024, [10] Wang et al. (2024). 
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Fig. 5. Carbohydrates in the food sector: their unique features and different applications (adapted from 

Low et al., 2023, and Ramaprabha et al., 2024). 

 

The field of food packaging has received much more 

progress in recent years due to the great outstanding 

achievements in nano- and technology in this 

industry. This is obvious in several studies which 

reported on the modified polysaccharides (Janik et 

al., 2023), with a focus on the anti-microbial activity 

(Duda-Chodak et al., 2023), the sustainable approach 

of polysaccharide bio-based hydrogel (Sudheer et al., 

2023), and the nano-biodegradable polymer materials 

(Liao et al., 2023). Thus, producing food biopolymer 

films is essential in the food packaging industry, to 

ensure the food system's success, quality, and safety 

of food products (Sudheer et al., 2023). Many recent 

published studies confirmed the importance of 

applying nano-biopolymer materials in the food 

packaging industry, such as nano-chitin (Liao et al., 

2023), cellulose/ chitosan/nano-ZnO composite film 

(Cen et al., 2023), and nano-cellulose (Cataño et al., 

2023). Valorization of agro-wastes (e.g., straw of rice 

and wheat) has been applied in food packaging such 

as cellulose (Bangar et al., 2023a, b), besides food 

wastes of fruit and vegetable (Karimi Sani et al., 

2023). 

 

5.2 Carbohydrates in therapeutics and pharma  

Carbohydrates are essential macro-molecules for 

human health with many therapeutic and 

pharmacological applications (Figure 6). 

Carbohydrates play several direct/indirect roles in 

various crucial biological processes including cell 

communication, organogenesis, fertilization, cell 

regulation, tissue healing, and pathogenesis (Xiang et 

al., 2021). Carbohydrates have unlimited benefits in 

the biological and therapeutical relevance due to their 

previous biological functions (Cao et al., 2022). 

Carbohydrate-based therapies are frequently 

employed  hematological and cardiovascular 

conditions, such as inflammatory disorders, anti-

thrombotic therapy, and wound healing (Hossain and 
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Andreana 2019). Carbohydrate-based therapeutics 

may include carbohydrate-based antiviral drugs, anti-

cancer drugs, antibacterial drugs, anti-diabetics, and 

carbohydrate-based cardiovascular drugs (Cao et al., 

2022; Wang et al., 2022; Ramaprabha et al., 2024). 

Carbohydrate polymers are promising drug delivery 

candidates, attracting researchers and pharmaceutical 

companies due to their taste masking, targeted drug 

delivery, fast integration, controlled drug release, and 

extended drug release (Ramaprabha et al., 2024). The 

commonly used carbohydrates (polysaccharides) in 

drug delivery may include gum of guar, xanthan, 

dextran, gellan, alginate, mannan, pullalan, 

hyaluronan, chitosan, chitin, and chitosan oligo-

polysaccharides (Banerjee et al., 2023; Kumar et al., 

2023; Manna et al., 2023; Galasso et al .2023). 

 

 

Fig. 6. Suggested therapeutic and pharmacological applications of carbohydrates (sources: Xiang et al., 

2021; Cao et al., 2022; Low et al., 2023; Ramaprabha et al., 2024). 

 

5.3 Carbohydrates and nano- agro-management  

What is the expected role of carbohydrates in nano-

management in the agriculture sector? Which 

agricultural fields are subjected to carbohydrate-

based nano-management? related to nano-

management using carbohydrates, especially 

biopolymeric nanoparticles generated from plants 

and microbes (Verma et al., 2020). These fields may 

involve plant nano-protection (Korbecka-Glinka et 

al., 2022; Kongala and Kondreddy 2023), nano-

agrochemicals using nano fertilizers, nano pesticides, 

and nano-gene delivery (Saberi Riseh et al., 2023; 

Sharma et al., 2023), nano-biosensors (Chopade et 

al., 2023), nano-management of pollution (Rizwan et 

al., 2022; Rub et al., 2023; Zhao et al., 2023), and 

nano-valorization of agro-wastes (Bala et al., 2023). 

Almost all agricultural activities can be achieved 

using carbohydrate-based nanomaterials, including 
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seed sowing/seedling cultivation (Rostamabadi et al., 

2023), during growing stages or pre-harvest (Mawale 

and Giridhar 2024), and postharvest (Jahani et al., 

2023). The most common carbohydrate-forms used 

in these agro-practices may include nanofibers or 

nano-biopolymers-based polysaccharides, which 

originated from microbes, plants, and animals 

(Figure 7; Bahrami et al., 2019; Kou et al., 2024). 

These polysaccharide nano-biopolymers should have 

specific characteristics, including excellent 

biocompatible, antibacterial, low immunogenic and 

biodegradable properties (Ramaprabha et al., 2024). 

There are several applications of carbohydrate-based 

nano-biopolymers in agriculture (Table 3), such as 

applying bioactive agents to alleviate biotic stress on 

plants (Saberi Riseh et al., 2022), controlling the 

slow-release of pesticides by nano-formulation 

(Maan et al., 2024), applying biocides through 

encapsulation of trace elements onto biopolymers for 

crop protection (Enwemiwe et al., 2024), and 

cellulose-based fertilizers for increasing crop 

production and soil quality (Skrzypczak et al., 2023). 

 

Table 3. Some published studies on chitosan and cellulose-based composites in agriculture. 

 

Carbohydrates Applied form Suggested benefit of the application Refs. 

Chitosan  chitosan nano-

biopolymer 

Apply grapefruit peel essential oil by encapsulation to enhance 

cherry tomato's shelf-life and postharvest quality.  

[1] 

Chitosan Chitosan zinc 

nanocomposite 

As slow-release nano-Zn fertilizer through the alternative method 

as a nanocarrier used in agronomic biofortification of nutrients 

[2] 

Chitosan Chitosan–guar 

gum biopolymer 

Controlled release of the pesticide of chlorpyrifos through 

encapsulation into the bio-polymer-based nano-formulation 

[3] 

Chitosan  Chitosan nano-

composites 

Chitosan-based nanocomposites are promising candidates for 

wastewater treatment as adsorbents. 

[6] 

Chitosan  Chitosan 

encapsulated NiO 

nanocomposites 

Enhanced wheat production through promoting the uptake of 

nutrients and photosynthesis as an eco-, long-term manner and a 

viable strategy for sustainable farming 

[7] 

Chitosan Chitosan-

putrescine NPs 

Applied nano-composite alleviated Cd-toxicity in grapevine by 

enhancing photosynthetic status & antioxidant enzymatic activity. 

[8] 

Chitosan Chitosan 

fabricated 

biogenic Ag-NPs 

Applied nano-form reduced bacterial leaf spot disease by 

increasing water use efficiency and net photosynthetic rate and 

decreasing stomatal conductance and transpiration rate compared 

to the infected plant. 

[9] 

Cellulose  Nano-cellulose 

based materials 

For remediation, the agricultural resources of the chemical 

pollutants as the sorbents  

[4] 

Cellulose Cellulose-based 

nanobiocomposite 

Purification of water/wastewater via adsorption, photocatalytic, 

and antibacterial approach using cellulose nano-bio-composites  

[5] 

Cellulose Cellulose-based 

fertilizers 

Increased nutrient accessibility, crop productivity, and soil health 

by promoting soil quality parameters, including microbial activity, 

organic content, and soil water retention 

[10] 

Refs. [1] Jahani et al. (2023) [2] Cyriac et al., 2023 [3] Maan et al., 2024 [4] Hassanisaadi et al., 2023 [5] Zhang 

Z et al., 2023 [6] Bhatt et al. (2023), [7] Sharma K et al., 2023, [8] Panahirad et al., 2023, [9] Giri et al. 2023, 

[10] Skrzypczak et al. (2023) 

 



 CARBOHYDRATE-BASED FOODS UNDER AGROECOSYSTEMS: REVIEW ON A JOURNEY ... 1151 

____________________________ 

Egypt. J. Soil Sci. 64, No. 3 (2024) 

 
Fig. 7. Applying carbohydrates in the nano-management of different activities in agriculture (sources: Bahrami et al., 

2019; Verma et al., 2020; Ramaprabha et al., 2024). 
 

 

6. Carbohydrate-based foods and human health 

Why are carbohydrates important for human health? 

Which quality criteria control this importance? 

Firstly, carbohydrate-based foods are essential for 

improving human health, depending on the 

carbohydrate quality indices (source of food, percent 

of added sugar, and fiber  content). In contrast, the 

negative impacts on health are linked to high intakes 

of added sugar and high glycemic index (Schulz and 

Slavin 2021). Three necessary suggested quality 

indices of carbohydrates were proposed including 

environmental sustainability, degree of processing, 

and carbohydrate-containing foods as a source of 

protein (Schulz and Slavin 2021). In general, 

carbohydrates have diverse compounds including 

starches, sugars, and dietary fiber, which are found 

naturally in dairy products and fruits (sugars). In 

contrast, starches are found in cereals, bread, and 

starchy vegetables (Figure 8). The digestion of 

carbohydrates begins in the mouth through 

converting starch (polysaccharides) by salivary 

amylase, and the end-product will be 

monosaccharides (glucose), after more action of 

oligo-saccharides in the small intestine.  

There are enormous themes related to carbohydrates 

and human health reported by several researchers 

with a focus mainly on the role of carbohydrates in 

human diets (Papadopoulou and Nikolaidis, 2023; 

Dyńka et al., 2023), carbohydrate-based diets and 

human diseases (Sievenpiper 2020; Varaee et al., 

2023), and the functional carbohydrate-based 

hydrogels for therapy (Zhang Y et al., 2023). 

Carbohydrate content in a diet is crucial and should 

be consumed enough to avoid causing many human 

diseases (Jung and Choi 2017; Wachsmuth et al., 

2022). Several human diseases were reported to be 

linked to high or low intake of carbohydrates, such as 

diabetes (Zhang Y et al., 2023), epilepsy (Kossoff 

2023), depression and anxiety (Varaee et al., 2023), 

cardiovascular diseases (Jo and Park 2023), obesity 

(Ludwig 2023), and the mortality (Qin et al., 2023; 

Zhao Y et al., 2023). The most critical question in 

this context is when the intake of carbohydrates will 

be the reason for a disease or treatment. The answer 

might be associated with the dietary carbohydrate 

quality and quantity, on one hand, and human 

characteristics, on the other hand. It is found that 

increased dietary carbohydrate intake and 

consumption are linked to the increased risk of 

cardiovascular diseases and stroke, along with all-

cause mortality (Qin et al., 2023). 
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Fig. 8. Carbohydrates for human health including many defined quality indices (part I), the primary 

sources of carbohydrates (part II), and low -carbohydrate diet systems (part III) (Source: Schulz 

and Slavin 2021; Wachsmuth et al., 2022; Papadopoulou and Nikolaidis 2023). 

 
7. In vitro digestion models of carbohydrates 
What does the digestive model mean? Why did 
researchers aim to design in vitro models of 
digestion? Because human digestion’s process is 
costly, complicated, differs from one person to 
another and is restricted by ethical limitations 
(Directive 2001/20/EU, 2001). Also, using animals 
as alternative models for humans should be avoided 
as much as possible (Directive, 2010/63/EU 2010). 
Therefore, these considerations have led researchers 
to design and use in vitro models to simulate the 
human digestive system for research purposes 
(Sensoy 2021). The human digestive system consists 
of the digestive tract and the accessory organs 
controlled by nerve networks and hormones (Saladin, 
2017). The digestive tract can be described as an 
open-ended tube of 8–9 m in length starting from 
mouth to anus, consisting of the pharynx, 
oesophagus, stomach, small and large intestines. 
Accessory digestive structures are the teeth, tongue, 
salivary glands, liver, gall bladder, and pancreas 
(Ogobuiro et al., 2023). 
In vitro, digestion models have been developed since 
the 1990s for food digestion studies. Moreover, 
digestion models are tools that could be applied to 
innovative and develop novel food products 

(functional foods) for human health. These models 
could be helpful to for the conscious designing of 
functional food products by estimating the in vivo 
behavior of nutrients or food components in the 
gastrointestinal tract after meals (Xin et al., 2023). 
Knowing the result of the intake of food components 
in the human digestive system is attracted the 
researcher's attention because its relation to nutrition 
and health, where foods contain components that 
could have either positive or negative effects on 
human health (Sensoy, 2021). So, the foods’ 
structure and composition significantly affect their 
functional and nutritional potentials during digestion 
(Dupont et al., 2018).  
In many countries all over the world, part of the 
population has malnutrition diseases or is 
overweight. The relation between dietary foods with 
health and disease has been strengthened. These links 
increased the consumer's awareness of the functional 
properties of the foods, the consequence of the food 
industry was promoted (Bornhorst et al., 2016). 
Studying food digestion in vivo (in human or animal) 
or in vitro methods (by simulation) is possible. Both 
methods have their advantages and disadvantages. 
Even though in vivo studies can give direct results, 
the ethical requirements and variation of the 
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digestive system from one to another made the in 
vitro models preferred to use. These in vitro methods 
could be employed in food, nutrition, and medical 
research because of their speed, low cost, and 
reproducibility due to standardized and controlled 
conditions compared to in vivo studies (Egger et al., 
2019). Many in vitro simulation methods have been 
designed to transcribe the complex human digestive 
system. They attempt to repeat the physiological 
conditions of the human digestive system as soon as 
possible. The models have been improved 
extensively over the years, and some have been used 
widely in the food, nutrition, and medical industries 
(Sensoy 2021).  
In vitro digestion models are widely applied to 
investigate the structural changes, digestion, and 
release of food components under simulated 
gastrointestinal conditions. Compared to the in vivo 
digestion tests, the in vitro ones reflect the digestion 
and utilization of food after ingestion and have the 
advantages of being cheaper, timesaving, repeatable 
and without moral and ethical restrictions Guo et al. 
2021a). The in vitro studies carried out on simulated 
digestion models of polysaccharide carbohydrates 
have been reviewed (Guo et al. 2021a); these studies 
provided an essential information for further 
examinations on the changes happen in the content, 
structure, and active ingredients of polysaccharides 
before and after digestion. Polysaccharides are 
biological macronutrients, consisting of 
monosaccharides units connected by glycoside bonds 
to make polymers. Polysaccharides could be 
classified based on different ways (Guo et al., 2021b) 
according to their composition (homo- and 
heteropolysaccharides), their physiological function 
(structural and storage polysaccharides), their origin 
(animal, plant and microbial origin polysaccharides) 
and digestibility (digestible and indigestible 
polysaccharides). Polysaccharides exhibited several 
biological activities: antibacterial (Yang et al., 2021), 
anti-tumour (Zhang et al., 2021), antiviral (Guo et al., 
2021), antioxidant potential (Fang et al., 2021), 
immunomodulation (Huang et al., 2021) and 
hyperglycaemic (Pan et al., 2020).  
Recently, in vitro simulated digestion models for 
edible and medicinal plant polysaccharides have 
been developed (Mao et al., 2019; Wu et al., 2020; 
Zhang et al., 2020). In this concern, the effects of 
simulated saliva-gastrointestinal on the in vitro 
digestibility of polysaccharides, physicochemical 
properties and bioactive components of Siraitia 
grosvenorii; a perennial plant from Cucurbitaceae 
family, were studied (Table 4; Guo et al. 2022). The 
antioxidant potential and phytochemical bio-
accessibility from eight fruit juices as a response to 
in vitro simulated gastrointestinal digestion 
(Mihaylova et al. 2021) have been investigated. The 
catabolic property of mushrooms (Dictyophora 
indusiata) polysaccharide during in vitro digestion 
and its effect on Gut microbial and human health was 
examined (Zhao et al., 2023). Moreover, the impact 
of balsamic vinegar of Modena (BVM) dressing on 
digestibility and accessibility/availability of food 

components (bioactive molecules) that are released 
from the starch‐rich meal (boiled potatoes) using an 
in vitro digestion method has been studied (Urbinati 
et al., 2021). Vinegar has been reported to possess 
antioxidant, antimicrobial, and antitumor activity, 
and it can regulate blood pressure; its effects are 
mainly related to its content of carotenoids, 
phytosterols, phenolic compounds, and vitamins C, 
and E. Vinegar could improve digestive system 
function, appetite stimulation, and reduce 
hyperglycemia, hyperlipidemia, and obesity (Budak 
et al. 2014; Ho et al. 2017). To achieve food security, 
improve nutrition, conserve marine resources and 
maintain the aquaculture industry, an in-vitro 
engineered digestion protocol for fish has been 
established lately and purposed to be improved and 
developed (Wang et al., 2021). This method will 
prove a faster and cheaper way to assess nutrient 
digestibility. To obtain healthier food products, 
gastrointestinal in vitro digestion and fermentation 
studies/methods of carbohydrate-rich foods have 
increased (León et al., 2023) and become most 
popular in food nutrition or pharmaceutical sectors. 
INFOGEST digestion models are the most used 
methods to study the gastrointestinal digestion of 
different foods (fruit, vegetable, cereal, dairy, egg, 
meat, and fish). Moreover, they are increasingly used 
to understanding the behaviour of plant-based foods 
in the human gastrointestinal tract. This model can 
also be used to monitor the bioavailability of 
proteins, lipids, carbohydrates, vitamins, and 
minerals in food matrices. This knowledge can help 
us to design foods with improved nutritional and 
health effects for humans (Zhou et al .2023).  
Starch is the primary source of carbohydrates in the 
human diet. Various factors affect their digestibility 
(Toutounji et al., 2019). In vitro, starch digestion to 
describe oligosaccharide or glucose release was 
reviewed early by Dona et al. (2010). Slow starch 
digestibility is an essential trait in food since high 
postprandial glucose levels have been associated 
with different non-communicable diseases such as 
type 2 diabetes, obesity, hyperglycemia, and 
cardiovascular diseases (Pautong et al. 2022). Non- 
or slowly digestible carbohydrates (resist digestion) 
may have beneficial physiological effects, such as 
low-calorie (to prevent obesity), low-glycemic index 
(to control cardiovascular and diabetes disease), and 
low-digestible (to reduce the intestinal transit time 
and modulate the gut microbiota composition and 
activity) (Hernandez-Hernandez et al., 2019). Argyri 
et al. (2016) have proposed an in vitro digestion 
protocol that could be applied to predict glycemic 
response, which is highly linked with chronic 
diseases such as obesity and type 2 diabetes, in foods 
or meals. In the same context, glycemic indexes of 
some Turkish bread were evaluated using in vitro 
enzymatic carbohydrate digestion (Yusufoğlu et al 
2021). 
On the other hand, digestible carbohydrates may 
have different impacts on human health as acting as 
dietary fiber and prebiotics (Rastall et al. 2019). 
Evaluating the quality of carbohydrates (which 
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means 40–80% of daily intake), ng the quality of 
carbohydrates (40–80%) is an essential intervention 
for glycemic control. More than half of the 
population worldwide, mainly in Asia, derives more 
than 50% of daily calories from rice as a staple 
carbohydrate source. So, in rice-based diets, reducing 
a variety's glycemic index (GI) through postharvest, 
genetics, and cooking, are critical issue (Jukanti et 

al., 2020). Finally, it is recommended to use 
multiscale  food digestion that aims to provide a 
quantitative analysis of food digestion processes by 
combining in vitro and in vivo studies. This 
multiscale approach will optimize functional food 
properties to facilitate food product development 
(Bornhorst et al., 2016). 

 
Table 4. Studies on enzymatic degradation of carbohydrates in some plant species 
 

Plant species 
(family) 

Type of carbohydrates/ 
biological activities 

Enzymatically 
degraded 
products 

Biological activity after 
degradation 

Ref. 

Cicer arietinum L. 
(Fabaceae)  

Pectins (galacturonic acid-
rich pectic 
polysaccharides), that give 
rigidity to the cells  

Monosaccharide 
(galactose) 

Loss of cell wall rigidity 
that accompanies growth 
and ripening 

[1] 

Cicer arietinum L. 
(Fabaceae) 

Antioxidant, anti-
inflammatory, and 
amylase inhibitor 

Mannose, glucose, 
and galactose 

Abolish cell death-inducing 
endoplasmic reticulum 
stress 

[2] 

Fagopyrum 
esculentum 
Pseudocereals 
(Polygonaceae) 

Dietary fiber poly-
saccharides with large 
quantity of pectins 

Ferulic acid 
oligosaccharides 

Buckwheat polysaccharide 
fractions have probiotic 
properties  

[3] 

Fagopyrum tataricum 
Pseudocereals 
(Polygonaceae) 

In functional foods for 
treatment of health, 
malnutrition, wheat 
allergy and celiac patients 

Arabinan and 
galactan 
oligosaccharides 

Maintain gut microbiota [4] 

Amaranthus caudatus 
pseudocereal grains 
(Amaranthaceae) 

Dietary fiber 
polysaccharides 

Fiber 
polysaccharide 
fractions 

Improving the fermentative 
and rheological properties 
of wheat dough, the 
elasticity of the breads  

[5] 

Oat: Avena sativa 
(Poaceae) 

Dietary soluble fiber (β-
glucan) polysaccharide of 
glucose molecules linked 
by β-glycosidic bonds 

Glucose  Enzymatic hydrolysis 
preserved the nutritional 
quality of oat bran  

[6] 

Rye: 
Secale cereale L. 
(Poaceae)  

Dietary fiber 
carbohydrates 
(arabinoxylans, fructans 
and glucans) 

Endogenous 
enzymes of starch 
degradation to 
amylase 

Total content of 
arabinoxylans in the 
sourdough breads was 
increased, and solubility  

[7] 

Proso Millet: 
Panicum miliaceum 
L. 
(Poaceae) 

Starch with high amylose 
content, high-resistant 
starch digestible starch, 
dietary fiber  

Digestible starch 
was hydrolyzed to 
D-glucose  

Glucose through aerobic or 
anaerobic respiration and 
fermentation 

[8] 

Proso Millet: 
Panicum miliaceum 
L. 
(Poaceae) 

Proso millet can be 
incorporated into wheat-
based breads and pasta 

D-glucose content 
was measured with 
GODOP reagent 

It stored as starch in plants 
and glycogen in animals to 
be used the metabolic 
processes 

[9] 

Psilium husk:  
Plantago ovata 
(Plantaginaceae) 

Polysaccharides fiber and 
polysaccharides 
hydrocolloids (mucilage) 

Polysaccharides 
hydrolyzed to 
xylose, arabinose, 
galacturonic acid 

Insulin resistance and 
fasting blood glucose 

[10] 

Psilium husk:  
Plantago ovata 
(Plantaginaceae) 

Improve lipid profile and 
the cardiovascular health  
In gluten-free bread 
production 

Maltose could be 
detected in the 
baking dough 
samples 

Reducing the acrylamide 
content 

[11] 

Chia: 
Salvia hispanica L. 
mint family 
(Lamiaceae) 

D-glucose, D-mannose, D-
galactose, D-galacturonic 
acid, D-xylose and D-
glucuronic acid 

Chia seeds 
polysaccharides 
(CSP-A) were 
extracted and 
purified 

Hypoglycemic, immune- 
boosting, antibacterial, 
antioxidant, anti-tumor and 
anti-radiation 

[12] 

Linseed (flaxseed): 
Linum usitatissimum 
L. (Linaceae) 

Soluble/insoluble dietary 
fiber, mucilage poly-
saccharides (L-arabinose) 

Enzymes of lignan 
hydrolysis from its 
complex 

Biological impacts of 
lignans as antioxidants, 
antiviral, and anticancer  

[13] 

 
Refs. [1] Minzanova et al. (2018), [2] Zhu et al. (2022), [3] Sofi et al. (2022), [4] Xiang et al. (2023), [5] Zhu (2020), [6] Tan 
et al. (2023), [7] Koj and Pejcz (2023), [8] Balli et al. (2023), [9] Narciso and Nystrӧm (2023), [10] Bacha et al. (2022), [11] 
Bartkiene et al. (2023), [12] Xiao et al. (2023), [13] Sangiorgio et al. (2023). 
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8. Conclusions  

Carbohydrates are important sources of plant and 

animal food for human nutrition. Carbohydrate-based 

plant foods include grains, vegetables, fruits,  

legumes, and animal sources like dairy products. 

These macromolecules have several biological 

benefits for human health, nutritional, 

pharmaceutical, and biomedical benefits. 

Surprisingly, the story of carbohydrates starts in soil, 

where cultivated plants collect, store, and sequester 

carbon through the photosynthesis process. The 

transformation of CO2 by plants is the starting point 

to form carbohydrates, which may decompose 

microbially in soil again. Carbohydrate-based foods 

contain essential nutrients such as sugars, dietary 

fiber, and necessary elements (K, Ca). 

On the other hand, the higher intake of high-

carbohydrate-based food may cause many human 

diseases such as obesity, diabetes, cardiovascular 

diseases, epilepsy, depression, and anxiety. The 

complete story of carbohydrates in agroecosystems 

starts from soil and  in soil through many global 

issues, including soil carbon sequestration, loss of 

soil fertility, soil erosion, and climate change. 

Applied carbohydrates in the food sector involve 

food processing, packaging, carbohydrate-based 

protein alternatives, carbohydrate-based fat replacers, 

and biosurfactants. Concerning the therapeutic and 

pharmacological applications of carbohydrates, they 

include carbohydrate-based prebiotics, therapeutics, 

and carbohydrate-based hydrogels for therapy. 

Carbohydrates have distinguished applications for 

nano-management in agriculture as referring in nano-

biosensors, nano-soil improvement, nano-enabled 

soil amendments, nanomaterials for crop 

improvement, nano-gene delivery, and nano-

valorization of agro-wastes. A crucial need is 

requested for the digestive model of carbohydrates to 

understand this macromolecule and its potential for 

human health.  
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