

Egyptian Journal of Soil Science

http://ejss.journals.ekb.eg/

Enhancing the Quantitative and Qualitative Traits of Wheat Grown with Low Mineral Nitrogen Level through Zeolite, Sorbitol and Copper

Eman H. Abd El-Azeiz, Amany E. El-Sonbaty and Mohamed A. El-Sherpiny

Soil & Water and Environment Research Institute, Agriculture Research Center, Giza, 12619 Egypt

HIS FIELD experiment was conducted to investigate the effects of zeolite amendment and foliar applications of copper, both in normal and nano forms, combined with sorbitol spray on the growth, yield, and grain quality of wheat (Triticum aestivum L.) under varying mineral nitrogen doses. The scientific aim was to evaluate the potential of these treatments to improve wheat performance and nutrient use efficiency while reducing nitrogen fertilizer inputs (ammonium sulphate, 20.6 % N). The experiment followed a split-split plot design, with nitrogen fertilizer rates (100% and 80% of the recommended dose, equivalent to 75 and 60 kg N per feddan, respectively) as the main plots, zeolite application (applied at rate of 1.7 ton fed⁻¹ or not), as the sub-plots, and foliar applications [control (without), copper sulphate (CuSO₄.7H₂O, 25 % Cu, 20 mg Cu L⁻¹), sorbitol (500 mM L⁻¹), copper oxide Nanoparticles (CuO NPs, 2.0 ng L^{-1}), sorbitol + mineral Cu as combined treatment, sorbitol+ nano Cu as combined treatment) as sub-sub plots. Results showed that higher nitrogen doses generally increased growth parameters, grain yield, and grain quality attributes, but zeolite incorporation significantly enhanced these parameters even at lower nitrogen levels. Additionally, foliar applications of copper, especially in nano form, combined with sorbitol, further improved wheat performance, emphasizing the importance of integrated nutrient management strategies. Notably, the presence of zeolite mitigated the negative effects of reduced nitrogen doses, highlighting its role in enhancing nutrient use efficiency and crop resilience. The most significant findings included increased grain yield, nitrogen content, protein content, and total sugar content in wheat grains with zeolite application and foliar treatments. The interaction effects demonstrated the synergistic benefits of zeolite with foliar applications, particularly in improving nitrogen and protein contents. Also, the obtained results confirmed that zeolite possessed a vital role in improving soil fertility via raising the soil content of NPK as well as water holding capacity (WHC). Overall, the study underscores the potential of zeolite and foliar applications as effective tools for optimizing wheat production while reducing environmental impacts associated with excessive nitrogen fertilization. It is recommended to further explore these treatments under diverse agro-climatic conditions and crop systems to validate their efficacy and scalability. Additionally, future research should focus on elucidating the mechanisms underlying the observed improvements in nutrient uptake, utilization efficiency, and crop performance to optimize their application strategies for sustainable agriculture.

Keywords: Zeolite, Sorbitol, Copper, Nanoparticles, Sustainable agriculture.

1. Introduction

Wheat holds immense importance for the Egyptian people, serving as a staple food crop that forms the basis of their diet and sustains millions of households across the nation. However, despite its significance, the agricultural sector faces challenges, particularly in reducing the overreliance on mineral nitrogen fertilizers (Farid *et al.* 2023). While essential for wheat growth and

productivity, excessive nitrogen application poses environmental risks, including soil degradation and water pollution. Therefore, there is a pressing need to explore sustainable agricultural practices that mitigate these concerns while ensuring food security (Abd El-Aty *et al.* 2024; Gamal *et al.* 2024).

Zeolite emerges as a promising solution in this regard, renowned for its ability to hold nitrogen

^{*}Corresponding author e-mail: M_Elsherpiny2010@yahoo.com. Received: 25/04/2024; Accepted: 17/05/2024 DOI: 10.21608/EJSS.2024.285238.1755 ©2024 National Information and Documentation Center (NIDOC)

and water in the soil, thereby enhancing nutrient availability and improving soil properties (Szatanik-Kloc et al. 2021; El-Ghamry et al. 2024; Aslan and Arslan, 2024). Zeolites are a group of hydrated aluminosilicate minerals with a three-dimensional framework structure consisting of aluminum, silicon, and oxygen atoms (Chester and Derouane 2009; Mosa et al. 2020). These minerals have a porous crystal structure that allows them to trap and exchange ions, gases, and molecules, making them valuable in various industrial, agricultural, and environmental applications (Sedaghat et al. 2022; Elawady et al. 2024).

Additionally, copper plays a crucial role in wheat nutrition, aiding in various physiological processes crucial for growth and development (Sarhan and Bashandy 2021). The advent of nano-copper further amplifies its importance, offering increased efficiency and effectiveness in nutrient uptake and utilization (Kumar *et al.* 2021).

Moreover, sugar alcohols, particularly sorbitol, have garnered attention for their potential benefits in wheat cultivation, including improved stress tolerance and yield (El-Sherpiny and Faiyad 2023). Sorbitol, a hexose sugar alcohol with the chemical formula $C_6H_{14}O_6$, is synthesized directly during photosynthesis in mature plant leaves. Its production parallels that of sucrose. It facilitates the translocation of carbon skeletons and energy between source and sink organs within the plant (Elbatrawy *et al.* 2023; Li *et al.* 2023).

Against this backdrop, the main goal of this experiment is to evaluate the efficacy of zeolite amendment, foliar applications of copper in normal and nano forms, and sorbitol spray in enhancing wheat growth, yield, and grain quality while reducing the dependency on mineral fertilizers. nitrogen Through rigorous experimentation and analysis, this study aims to valuable insights into provide sustainable agricultural practices tailored to the unique needs and challenges of wheat cultivation in Egypt, ultimately contributing to the advancement of food security and environmental sustainability in the region.

2. Material and Methods

2.1 Experimental location

Throughout two consecutive seasons, from 2022 to 2024, an experimental study was conducted on a privately-owned farm situated in Met Antar village, within the Talkha district of El-Dakahlia Governorate, Egypt (coordinates: 31°4'54"N - 31°24'4"E).

2.2 Soil sampling

Table 1 displays the properties of the original soil, just before the experiment started, with analysis conducted using standardized methods derived from **Sparks** *et al.* (2020) and **Dane and Topp** (2020), as the soil samples were collected at a depth of 0-30 cm both initially and at the time of harvest.

Table 1. Characteristics of son before sowing	Table	1.	Characteristic	s of soil	before	sowing
---	-------	----	----------------	-----------	--------	--------

Characteristics	Values
C. sand,%	3.300
F. sand,%	17.10
Silt,%	30.15
Clay	49.45
Textural class	Clay
WHC,%	36.25
EC, dS m ⁻¹	3.370
рН	8.100
Organic matter, %	1.190
Nitrogen, mg kg ⁻¹	40.92
Phosphorus, mg kg ⁻¹	9.150
Potassium, mg kg ⁻¹	210.9

2.3 Studied substances preparation

Zeolite was obtained from Alex Company located in Egypt. Table 2 illustrates the attributes of this zeolite. Copper sulphate was obtained from Shams Chemicals Company located in Egypt. Copper oxide nanoparticles were acquired from the National Research Center in Egypt. The size of these nanoparticles (12.9 - 29 nm) was analyzed using TEM imaging (Fig 1), while the X-ray diffraction (XRD) pattern of the copper oxide nanoparticles is depicted in Fig 2. Sorbitol was obtained from Techno Green Company located in Egypt.

Table 2. Th	e characteristics	of the	e studied	zeolite.
-------------	-------------------	--------	-----------	----------

Characteristics and units	Values
EC, dS m ⁻¹	2.5
CEC, cmolc kg ⁻¹	160
SiO ₂ ,%	65
AlO ₃ ,%	12

2.4 Experimental design and treatments

The experiment followed a split-split plot design, with nitrogen fertilizer rates (100% and 80% of the recommended dose, equivalent to 75 and 60 kg N per feddan, respectively) as the main plots, zeolite application (applied at rate of 1.7 ton fed^{-1} or not), as the sub-plots, and foliar applications [control

(without), copper sulphate (CuSO₄.7H₂O, 25% Cu, 20 mg Cu L⁻¹), sorbitol (500 mM L⁻¹), copper oxide Nanoparticles (CuO NPs, 2.0 ng L⁻¹), sorbitol + mineral Cu as combined treatment, sorbitol+ nano Cu as combined treatment) as sub-sub plots. Fig 4 shows the flowchart of this research work.

Fig. 1. TEM imaging of the prepared copper oxide Nanoparticles.

Fig. 2. X-ray diffraction (XRD) pattern of Copper oxide Nanoparticles.

Fig. 3. Flowchart of this research work.

2.5 Experimental setup and cultivation

Initially, the research area was prepared through a series of steps, including ploughing twice, compacting, dividing, and then subdividing into specific experimental units. Each sub-sub plot measured 1.5 x 1.5 meters, covering an area of 2.25 m². Cultivation took place on November 7th in both observed seasons, with a seeding rate of 75 kg per feddan (Triticum aestivum Cv. Giza 171, from the Ministry of Agriculture and Soil Reclamation in Egypt MASR) utilizing the broadcasting "Afir method". Ammonium sulphate (20.6 % N) was used as the nitrogen fertilizer, applied according to the studied treatments, as the recommended is 75 kg of N per feddan. Potassium sulfate (39.84% K) served as the potassium fertilizer, applied at a rate of 50 kg K per feddan for all experimental units. Calcium superphosphate (6.75% P) was utilized as the phosphorus fertilizer, applied at a rate of 30 kg P per feddan during soil preparation for all experimental units. The first irrigation was conducted 30 days after sowing, followed by subsequent irrigations every 25 days until reaching the dough stage. These cultivation practices followed the standard agricultural guidelines for wheat cultivation set by the MASR, Egypt.

Before cultivation, zeolite amendment was incorporated into the soil surface layer according to the studied treatments outlined above. The application of sorbitol and copper (both normal and nano forms) occurred either individually or in combination at 30, 45, and 60 days after sowing. The sprayed solution was applied at a volume of 350 liters per feddan for each study treatment. Harvesting was done on April [\]5th during both investigated seasons.

2.6 Measurement traits

After 70 days from sowing, plant samples randomly selected to measure plant height (cm), fresh and dry weights (g plant⁻¹) and leaf area (cm² plant⁻¹) as well as to determined chlorophyll (a &b), carotene (mg g⁻¹) and nitrogen contents (%). Leaf area was estimated using the leaf disc method as described by Watson (1952). Photosynthetic pigments were determined in fresh weights (straw) using spectrophotometer apparatus via acetone (80%) method according to Porra et al. (1989). The nitrogen concentration in dry weights samples (straw) was determined using a micro-Kjeldahl apparatus following the method outlined by Walinga et al. (2013). Wheat tissue samples were dried and then digested with a mixture of H_2SO_4 and $HClO_4$ (1:1), as described in the standard method by **Peterburgski** (1968).

At harvest stage, yield and its components, including grain, straw and biological yields (Mg ha⁻¹) and harvest index (%) were measured. biological yield is the total biomass of both grain and straw combined. Harvest index reflects the proportion of total biomass allocated to grain production. It was calculated as follows; Economical yield (grain yield)

Harvest index, $\% = \frac{\text{Economical yield (grain yield)}}{\text{Biological yield (grain + straw yields)}} \times 100$

Also, at harvest stage, grain quality such as nitrogen, protein, carbohydrates and total sugar contents (%) were determined according to the AOAC (2000). Nitrogen content reflects the nitrogen concentration in the grains, influencing protein content and overall nutritional value. Protein content indicates the proportion of protein in the grains, essential for human and animal nutrition. Protein content was determined by first calculating the nitrogen percentage and then multiplying it by a factor of 5.78. Carbohydrates represents the carbohydrate content in the grains, serving as a major energy source. Carbohydrate levels were assessed using a spectrophotometer, employing hydrochloric acid and anthrone. Total sugar content reflects the total sugar concentration in the grains, contributing to taste and palatability. Total sugar content was determined following extraction with ethyl alcohol (80%). Also, a phenol solution (5%) was used. The nitrogen content was determined as formerly mentioned with the straw samples in the first stage (after 70 days from sowing). ALSO, soil content of NPK (mg kg⁻¹) as well as water holding capacity (WHC, %) were determined using the standard methods as described by Sparks et al. (2020) and Dane and Topp (2020).

2.7 Statistical analyses

Statistical analysis of the data was conducted using **CoStat version 6.303, copyrighted from 1998 to 20**04, following the methodology outlined by **Gomez and Gomez (1984).**

3. Results

3.1 Plant performance at period of 70 days from sowing

Data of Tables 3 and 4 show the effect of zeolite amendment and sorbitol spray, combined with

copper in normal or nano form, on growth performance of wheat grown under different mineral nitrogen doses, including plant height (cm), fresh and dry weights (g plant⁻¹) and leaf area (cm² plant⁻¹) (Table3), chlorophyll (a &b), carotene (mg g^{-1}) and nitrogen contents (%) (Table 4) after 70 days from sowing during two successive seasons (2022/2023-2023/2024). These tables compares the growth performance of wheat under two nitrogen fertilizer rates: 100% and 80% of the nitrogen recommended dose (NRD). It's evident that higher nitrogen levels generally resulted in increased plant height, fresh & dry weights and leaf area as well as chlorophyll, carotene and nitrogen contents compared to lower nitrogen levels, as indicated by the numerical values and significant differences denoted by asterisks. The inclusion of zeolite amendment in the soil significantly improved wheat growth parameters, photosynthetic pigments and nitrogen concentration across both seasons. Plants treated with zeolite exhibited notably higher plant height, fresh & dry weights and leaf area as well as higher chlorophyll, carotene and nitrogen contents compared to those without zeolite. The statistical analysis confirms the significance of these differences. These tables also explore the effects of different foliar application techniques, including mineral copper, sorbitol, and nano copper, either individually or in combination. Overall, foliar application of copper, especially in nano form, along with sorbitol, resulted in enhanced plant performance, including growth traits, photosynthetic pigments and nitrogen concentration compared to the control and other treatments. Regarding interaction effects or combined treatments, it can be noticed that the presence of zeolite significantly influenced the growth parameters, photosynthetic pigments and nitrogen concentration of wheat, especially when compared to all combined treatments without zeolite. Notably, in treatments with 80% of the nitrogen dose and zeolite application, the plants exhibited comparable or even superior growth performance to those receiving 100% of the nitrogen dose without zeolite. This suggests that the inclusion of zeolite enabled the plant to

effectively utilize nitrogen resources, resulting in enhanced growth despite a 20% reduction in nitrogen application. The same trend was found under all studied foliar applications as combined treatments, as these treatments also contributed to variations in growth parameters, photosynthetic pigments and nitrogen concentration further emphasizing the importance of holistic management practices in optimizing crop performance. Finally, the data of both studied seasons were similar, as the consistency of the data across both studied underscores the reliability seasons and reproducibility of the experimental results.

3.2 Yield and its components

Tables 5 and 6 indicate the effect of the studied treatments on grain, straw and biological yields (Mg ha⁻¹) and harvest index (%) (Table5) as well as grain quality such as nitrogen, protein, carbohydrates and total sugar contents (%) (Table6) during two successive seasons (2022/2023-2023/2024) after harvest. Table 5 shows that higher nitrogen doses generally resulted in increased grain yield, straw yield, and biological yield, reflecting the essential role of nitrogen in plant growth and development. Also, the same table illustrates that the incorporation of zeolite into the soil enhanced grain yield, straw yield, and biological yield, indicating improved nutrient availability and utilization efficiency. Additionally, various foliar applications, including mineral copper and sorbitol, showed minor differences in yield parameters compared to the control, suggesting limited impact on yield under the conditions tested. Table 5 also shows that the combined treatments with zeolite demonstrated notable effects on yield parameters, especially when compared to treatments without zeolite. This highlights the synergistic benefits of zeolite in optimizing nutrient uptake and utilization efficiency, particularly in conjunction with reduced nitrogen doses. The consistent harvest index across treatments suggests that the proportion of biomass allocated to grain production remained relatively stable regardless of the experimental conditions. This indicates

efficient resource allocation strategies by the wheat plants, contributing to stable grain yields.

On the other hand, Table 6 shows that higher nitrogen doses generally led to increased nitrogen and protein contents in the grains, indicating enhanced protein synthesis and nitrogen assimilation as well as carbohydrates and total sugar contents. Additionally, the Incorporation of zeolite into the soil resulted in higher nitrogen, protein, carbohydrates and total sugar contents in the grains, suggesting improved nutrient availability and uptake efficiency. Also, the same Table indicates that foliar applications showed minor effects on grain quality parameters compared to the control, indicating limited impact on nitrogen assimilation and carbohydrate metabolism. Regarding the interaction effects, it can be noticed that the combined treatments with zeolite exhibited notable effects on grain quality parameters, particularly nitrogen and protein contents. This underscores the importance of integrated nutrient management strategies in optimizing grain quality and nutritional value.

3.3 Soil properties at harvest

Table 7 provides data on the effect of the studied treatments on some soil properties across two consecutive seasons at harvest. Soil properties such as nitrogen (N, mg kg⁻¹), phosphorus (P, mg kg⁻¹), potassium (K, mg kg⁻¹) concentrations, and water holding capacity (WHC, %) were evaluated under various combinations of nitrogen fertilizer rates, zeolite soil addition and foliar application of sorbitol and copper in normal or nano form.

The data reveals significant variations in soil properties among treatments. Firstly, regarding nitrogen fertilizer rates, it's evident that higher doses of nitrogen generally led to higher soil nitrogen concentrations, reflecting the direct influence of nitrogen application on soil nutrient content. Similarly, phosphorus and potassium concentrations tended to increase with higher nitrogen doses, indicating potential interactions between these nutrients due to fertilization practices.

Secondly, the incorporation of zeolite into the soil resulted in elevated levels of nitrogen,

phosphorus, and potassium, highlighting the role of zeolite in enhancing nutrient retention and availability in the soil. Zeolite's ability to adsorb and release nutrients gradually likely contributed to these observed improvements in soil fertility. Moreover, the data of the same table show that the addition of zeolite led to a significant increase in WHC (%) of soil at the harvest stage (Figs. 5,6,7 and 8).

Thirdly, the foliar application of sorbitol and copper, whether in mineral or nano form,

showed slight effects on soil properties compared to control treatments.

Moreover, the interaction effects between nitrogen fertilizer rates and zeolite application or foliar application of copper further influenced soil properties. For instance, treatments combining zeolite with higher nitrogen doses exhibited the highest soil nutrient concentrations, indicating synergistic effects between nitrogen fertilization and zeolite application in improving soil fertility.

Table 3. Effect of zeolite amendment and sorbitol spray, combined with copper in normal or
nano form, on growth performance of wheat grown under different mineral nitrogen
doses after 70 days from sowing during two successive seasons (2022/2023-2023/2024)

¥		Plant	height,	Fresh weight, g		Dry weight, g		Leaf area,		
		Treatments	cı	m	pla	nt ⁻¹	pla	nt ⁻¹	cm ²	plant ⁻¹
			1^{st}	2 nd	1^{st}	2^{nd}	1^{st}	2^{nd}	1^{st}	2 nd
			season	season	season	season	season	season	season	season
Mair	n factor:	Nitrogen fertilizer rates								
100 9	% of NR	D	72.21a	81.17a	48.91a	54.49a	17.14a	18.28a	38.09a	40.25a
80 % of NRD		62.18b	68.08b	33.59b	39.96b	11.75b	12.58b	33.84b	35.98b	
F test		**	**	**	**	**	**	**	**	
Sub	main fac	tor : Zeolite application	55 701	50.001	26.2.41	22 (2)	0.071	10.041	20 711	22.041
Without zeolite		55./2b	59.99b	26.24b	32.62b	8.9/b	10.04b	30.71b	32.84b	
			81.0/a **	89.27a **	30.20a **	01.85a **	19.92a **	20.82a **	41.22a **	45.58a **
r tes	l mh mair	factor - Faliar application		4.4						
Cont	sub man rol	racion : ronar application	62 36f	60 68f	35 37f	40.02f	12 3/f	13 //f	33 /1f	35 57f
Mine	rol Cu		65 70e	09.001 71.67e	37.53e	40.921 43.13e	12.341 13.17e	13.441 14.03e	34.41e	36.57e
Sorb	ital Cu		67.91d	73.09d	39.60d	45.150 45.51d	13.99d	14.05C	35 32d	37 40d
Nanc	non Cii		70.38c	74.72c	42.42c	48.07c	14.88c	15.94c	36.79c	38.95c
Sorb	itol+ Mi	neral Cu	72.28b	78.27b	45.07b	51.87b	15.78b	16.84b	37.57b	39.73b
Sorb	itol+ Na	no Cu	73.54a	80.33a	47.52a	53.85a	16.52a	17.53a	38.10a	40.47a
F tes	t		**	**	**	**	**	**	**	**
Inter	action									
		Control	57.18	60.22	28.18	33.22	9.58	11.28	31.62	33.78
	Without zeolite	Mineral Cu	58.90	63.14	29.32	35.44	9.97	11.78	31.92	34.08
		Sorbitol	60.54	64.62	31.68	37.90	10.75	12.72	32.20	34.31
•		Nano Cu	63.33	68.23	34.74	41.48	11.79	13.93	33.43	35.59
R		Sorbitol+ Mineral Cu	65.80	70.80	37.50	44.50	13.00	14.62	33.70	35.86
f		Sorbitol+ Nano Cu	68.67	74.52	39.32	45.84	13.47	14.87	34.91	37.07
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Control	82.36	90.35	58.22	61.36	20.60	21.12	41.25	43.41
0		Mineral Cu	84.12	93.47	60.42	62.98	21.36	21.58	41.58	43.75
10	th lite	Sorbitol	87.66	94.15	63.66	67.84	22.66	22.89	41.91	44.07
	[eo]	Nano Cu	88.43	94.87	65.12	70.45	23.10	23.77	43.80	45.96
		Sorbitol+ Mineral Cu	92.26	99.30	68.33	75.33	24.32	25.03	45.00	47.16
		Sorbitol+ Nano Cu	93.33	100.46	70.46	77.62	25.12	25.79	45.84	48.00
		Control	45.96	50.36	13.92	20.80	4.58	5.05	23.94	26.10
	4	Mineral Cu	46.62	50.83	15.69	22.99	5.52	5.58	25.72	27.88
	lite	Sorbitol	48.97	51.16	16.48	23.61	6.05	5.73	28.35	30.17
~	lith [eo]	Nano Cu	50.42	52.34	20.46	25.82	7.30	7.37	30.52	32.68
RI	8 N	Sorbitol+ Mineral Cu	50.93	55.46	22.33	29.43	7.50	8.41	30.80	32.96
fN		Sorbitol+ Nano Cu	51.35	58.20	25.30	30.52	8.16	9.15	31.49	33.65
• •		Control	63.95	77.80	41.16	48.31	14.63	16.32	36.84	39.00
<b>6</b> 0		Mineral Cu	73.18	79.26	44.72	51.14	15.85	17.21	38.43	40.59
õ	th lite	Sorbitol	74.48	82.44	46.58	52.72	16.51	17.81	38.85	41.01
	Ceo Ceo	Nano Cu	79.36	83.47	49.36	54.56	17.34	18.72	39.44	41.60
		Sorbitol+ Mineral Cu	80.16	87.55	52.15	58.23	18.30	19.33	40.80	42.96
		Sorbitol+ Nano Cu	80.83	88.16	55.00	61.42	19.36	20.32	41.00	43.16
F tes	t		*	**	**	**	**	**	**	**

Table 4. Effect of zeolite amendment and sorbitol spray, combined with copper in normal or nano form, on photosynthetic pigments and nitrogen concentration of wheat grown under different mineral nitrogen doses after 70 days from sowing during two successive seasons (2022/2023-2023/2024).

Treatments		Chloroj mg	phyll a,	Chloro	phyll b, 9 g ⁻¹	Caro	otene,	Nitr	rogen,	
		i i cutilicitus	 1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
			season	season	season	season	season	season	season	season
Mai	n factor: ]	Nitrogen fertilizer rates								
100	% of NRI	)	1.007a	1.064a	0.677a	0.709a	0.376a	0.379a	3.21a	3.30a
80 %	% of NRD		0.946b	0.996b	0.613b	0.645b	0.338b	0.342b	2.92b	3.03b
F tes	st		**	**	**	**	**	**	**	**
Sub	main fact	tor : Zeolite application								
Witl	hout zeoli	te	0.905b	0.952b	0.583b	0.615b	0.325b	0.328b	2.76b	3.03b
Witl	h zeolite		1.048a	1.108a	0.708a	0.740a	0.389a	0.393a	3.37a	3.30a
F tes	st		**	**	**	**	**	**	**	**
Sub-	-sub main	factor : Foliar application	1							
Con	trol		0.953f	0.989f	0.617f	0.649f	0.340f	0.342f	2.94f	2.99f
Min	eral Cu		0.964e	1.025e	0.628e	0.660e	0.346e	0.351e	2.99e	3.09e
Sort	oitol		0.972d	1.027d	0.640d	0.672d	0.355d	0.360d	3.03d	3.15d
Nan	o Cu		0.980c	1.030c	0.653c	0.685c	0.361c	0.365c	3.09c	3.21c
Sort	oitol+ Mir	neral Cu	0.990b	1.052b	0.662b	0.694b	0.367b	0.371b	3.14b	3.25b
Sorbitol+ Nano Cu		1.001a	1.058a	0.671a	0.703a	0.374a	0.375a	3.20a	3.30a	
F tes	st		**	**	**	**	**	**	**	**
Inte	raction									
		Control	0.905	0.937	0.583	0.615	0.327	0.331	2.76	2.87
	e ut	Mineral Cu	0.912	0.970	0.602	0.634	0.334	0.338	2.80	3.00
	thou	Sorbitol	0.916	0.973	0.613	0.645	0.340	0.344	2.86	3.05
<u> </u>	Wi ze	Nano Cu	0.929	0.962	0.624	0.656	0.348	0.352	2.94	3.12
NRI		Sorbitol+ Mineral Cu	0.940	1.00	0.633	0.665	0.355	0.359	3.00	3.15
[]o		Sorbitol+ Nano Cu	0.954	1.016	0.645	0.677	0.368	0.362	3.07	3.20
% 0		Control	1.059	1.096	0.707	0.739	0.386	0.386	3.40	3.31
10	د	Mineral Cu	1.074	1.147	0.715	0.747	0.390	0.394	3.46	3.47
	Vith	Sorbitol	1.085	1.155	0.732	0.764	0.408	0.412	3.50	3.56
	V Ze	Nano Cu	1.094	1.163	0.750	0.782	0.411	0.415	3.54	3.60
		Sorbitol+ Mineral Cu	1.104	1.169	0.758	0.790	0.420	0.424	3.57	3.63
		Sorbitol+ Nano Cu	1.112	1.185	0.766	0.798	0.426	0.430	3.60	3.68
	ite	Control	0.872	0.911	0.518	0.550	0.287	0.291	2.50	2.55
	Ceoli	Mineral Cu	0.880	0.932	0.535	0.567	0.295	0.299	2.53	2.60
	ut Z	Sorbitol	0.883	0.910	0.544	0.576	0.302	0.306	2.56	2.67
0	itho	Nano Cu	0.885	0.942	0.556	0.588	0.309	0.313	2.61	2.74
NRI	M	Sorbitol+ Mineral Cu	0.890	0.948	0.568	0.600	0.315	0.319	2.70	2.80
of		Sorbitol+ Nano Cu	0.900	0.926	0.575	0.607	0.320	0.324	2.74	2.85
% <b>0</b>		Control Minanal Ca	0.976	1.012	0.660	0.692	0.361	0.365	3.10 2.15	3.25
×	te h	Mineral Cu Sorbital	0.992	1.053	0.003	0.704	0.30/	0.370	5.15 2.20	5.5U 2.25
	Wit) eoli	SULDIOI Nono Cr	1.005	1.009	0.692	0.704	0.370	0.374	3.20 3.26	5.55 2.40
		Ivallo Uu Sorbitol   Minoral C	1.014	1.004	0.082	0.714	0.370	0.380	3.20	3.40 3.40
		Sorbital   Nana Cu	1.020	1.092	0.091	0.725	0.384	0.384	3.30	3.42 3.45
F te	st	SOLDIOIT MAID CU	**	**	*	*	**	**	**	**

		Grain yield	Grain yield, Mg ha ⁻¹		Straw yield, Mg ha ⁻¹		yield, Mg h	a ⁻¹ Harve	Harvest index,%	
		Treatments	$1^{st}$	2 nd	$1^{st}$	2 nd	1 st	$2^{nd}$	$1^{st}$	$2^{nd}$
			season	season	season	season	season	season	season	season
Mai	n facto	r: Nitrogen fertilizer rates								
100	% of N	RD	6.22a	6.36a	7.88a	8.11a	14.10a	14.47a	44.17a	44.02a
80 % of NRD		5.82b	5.93b	7.23b	7.47b	13.06b	13.41b	44.62a	44.25a	
F test		**	**	**	**	**	**	*NS	*NS	
Sub	main f	actor : Zeolite application								
Without zeolite			5.60b	5.72b	6.92b	7.14b	12.53b	12.86b	44.72a	44.47a
With zeolite		6.45a	6.58	8.19a	8.44a	14.64a	15.02a	44.08b	43.80b	
F test		**	**	**	**	**	**	*NS	*NS	
Sub-sub main factor : Foliar application		ion								
Con	trol		5.86f	5.97f	7.31f	7.54f	13.17f	13.52f	44.47a	44.22a
Min	eral C	1	5.92e	6.03e	7.40e	7.62e	13.32e	13.66e	44.45a	44.20a
Sorb	oitol		6.00d	6.12d	7.50d	7.74d	13.50d	13.85d	44.48a	44.16a
Nan	o Cu		6.06c	6.18c	7.58c	7.81c	13.64c	13.99c	44.44a	44.19a
Sorbitol+ Mineral Cu		6.13b	6.27b	7.72b	7.96b	13.86b	14.24b	44.29a	44.09a	
Sorbitol+ Nano Cu		6.19a	6.32a	7.81a	8.07a	14.00a	14.39a	44.24a	43.94a	
F test		**	**	**	**	**	**	*NS	*NS	
Interaction										
	Without zeolite	Control	5.60	5.72	6.95	7.17	12.53	12.89	44.52	44.37
		Mineral Cu	5.67	5.80	7.08	7.24	12.75	13.04	44.46	44.47
		Sorbitol	5.85	5.96	7.17	7.40	13.02	13.36	44.92	44.61
		Nano Cu	5.92	6.04	7.25	7.46	13.17	13.50	44.95	44.70
RD		Sorbitol+ Mineral Cu	5.96	6.13	7.35	7.56	13.31	13.69	44.77	44.77
of N		Sorbitol+ Nano Cu	6.08	6.17	7.43	7.67	13.51	13.84	45.00	44.58
%		Control	6.50	6.65	8.32	8.57	14.82	15.22	43.85	43.69
100		Mineral Cu	6.53	6.70	8.40	8.64	14.93	15.34	43.73	43.67
	ith	Sorbitol	6.59	6.74	8.52	8.77	15.11	15.51	43.61	43.45
	M No	Nano Cu	6.62	6.77	8.64	8.87	15.26	15.64	43.37	43.28
		Sorbitol+ Mineral Cu	6.68	6.84	8.70	8.99	15.38	15.83	43.42	43.20
		Sorbitol+ Nano Cu	6.74	6.89	8.77	9.00	15.51	15.89	43.45	43.36
	0	Control	5.23	5.34	6.49	6.68	11.72	12.02	44.62	44.42
	olite	Mineral Cu	5.30	5.38	6.52	6.75	11.82	12.13	44.83	44.35
	t Ze	Sorbitol	5.32	5.41	6.60	6.82	11.92	12.23	44.62	44.23
	JOUT	Nano Cu	5.38	5.49	6.64	6.85	12.02	12.34	44.75	44.48
ß	Wit!	Sorbitol+ Mineral Cu	5.47	5.58	6.77	6.98	12.24	12.56	44.68	44.42
f N		Sorbitol+ Nano Cu	5.50	5.62	6.85	7.11	12.35	12.73	44.52	44.14
0 %		Control	6.11	6.20	7.50	7.76	13.61	13.96	44.89	44.41
80		Mineral Cu	6.18	6.27	7.62	7.88	13.80	14.15	44.78	44.31
	ith	; Sorbitol	6.25	6.35	7.71	7.97	13.96	14.32	44.76	44.34
	M	Nano Cu	6.32	6.42	7.82	8.08	14.14	14.50	44.69	44.27
		Sorbitol+ Mineral Cu	6.43	6.54	8.08	8.34	14.51	14.88	44.30	43.95
		Sorbitol+ Nano Cu	6.45	6.60	8.20	8.51	14.65	15.11	44.02	43.67
F tes	st		**	**	**	**	**	**	*NS	*NS

Table 5. Effect of zeolite amendment and sorbitol spray, combined with copper in normal or<br/>nano form, on yield of wheat grown under different mineral nitrogen doses at harvest<br/>stage during two successive seasons (2022/2023-2023/2024).

*NS = Non-significant

Table 6.	. Effect of zeolite amendment and sorbitol spray, combined with copper in normal or
	nano form, on grain quality of wheat grown under different mineral nitrogen doses at
	harvest stage during two successive seasons (2022/2023-2023/2024).

		Nitrogen,%		Protein,%		Carbohydrates,%		Total sugar,%		
		Treatments	1 st	2 nd	1 st	2 nd	$1^{st}$	2 nd	$1^{st}$	2 nd
			season	season	season	season	season	season	season	season
Mair	n factor:	Nitrogen fertilizer rates								
100 % of NRD		2.21a	2.27a	12.70a	13.06a	66.58a	67.62a	2.72a	2.79a	
80 % of NRD		1.96b	2.00b	11.32b	11.53b	64.28b	65.57b	2.47b	2.52b	
F test		**	**	**	**	**	**	**	**	
Sub	main fac	tor : Zeolite application								
With	out zeoli	ite	1.80b	1.88b	10.39b	10.83b	62.89b	64.06b	2.35b	2.39b
With zeolite		2.37a	2.39a	13.63a	13.76a	67.97a	69.13a	2.84a	2.92a	
F test		**	**	**	**	**	**	**	**	
Sub-	sub maiı	n factor : Foliar application	1							
Cont	rol		1.95f	2.00f	11.25f	11.52f	64.28f	65.49f	2.46f	2.51f
Mine	eral Cu		2.00e	2.07e	11.54e	11.91e	64.91e	66.03e	2.52e	2.57e
Sorb	itol		2.05d	2.12d	11.81d	12.21d	65.47d	66.37d	2.58d	2.61d
Nano	o Cu		2.11c	2.17c	12.17c	12.50c	65.64c	66.68c	2.62c	2.70c
Sorb	itol+ Mi	neral Cu	2.18b	2.21b	12.55b	12.69b	65.97b	67.27b	2.67b	2.75b
Sorb	itol+ Na	no Cu	2.21a	2.25a	12.75a	12.94a	66.33a	67.73a	2.72a	2.79a
F test		**	**	**	**	**	**	**	**	
Inter	action									
		Control	1.79	1.88	10.29	10.81	62.58	63.13	2.40	2.43
	t o	Mineral Cu	1.83	1.97	10.52	11.32	63.49	64.22	2.44	2.47
	olite	Sorbitol	1.88	2.03	10.81	11.67	64.04	64.57	2.50	2.50
-	Wit ze	Nano Cu	1.95	2.09	11.21	12.02	64.31	65.21	2.56	2.58
<b>NRD</b>		Sorbitol+ Mineral Cu	2.09	2.13	12.01	12.25	64.84	66.24	2.58	2.60
of ]		Sorbitol+ Nano Cu	2.13	2.17	12.24	12.47	65.20	67.00	2.64	2.66
% (		Control	2.38	2.40	13.68	13.80	68.36	69.52	2.84	2.90
10(		Mineral Cu	2.40	2.43	13.80	13.97	68.71	69.86	2.86	2.94
	ith olite	Sorbitol	2.43	2.47	13.97	14.20	69.33	70.00	2.90	2.97
	Ze W	Nano Cu	2.50	2.53	14.37	14.54	69.15	70.13	2.93	3.10
		Sorbitol+ Mineral Cu	2.55	2.56	14.66	14.72	69.45	70.62	3.00	3.18
		Sorbitol+ Nano Cu	2.59	2.62	14.89	15.06	69.60	70.96	3.07	3.22
	e	Control	1.51	1.56	8.68	8.97	60.73	62.19	1.95	2.02
	solit	Mineral Cu	1.59	1.67	9.14	9.60	61.24	62.66	2.09	2.15
	it Zo	Sorbitol	1.65	1.72	9.48	9.89	61.78	63.07	2.18	2.24
_	thou	Nano Cu	1.72	1.76	9.89	10.12	62.00	63.24	2.24	2.30
<b>R</b> D	Wit	Sorbitol+ Mineral Cu	1.76	1.80	10.12	10.35	62.15	63.52	2.31	2.36
of N		Sorbitol+ Nano Cu	1.79	1.84	10.29	10.58	62.40	63.76	2.38	2.40
%		Control	2.15	2.18	12.36	12.53	65.48	67.13	2.67	2.70
80	0	Mineral Cu	2.21	2.22	12.70	12.76	66.22	67.41	2.70	2.74
	Vith olite	Sorbitol	2.26	2.28	12.99	13.11	66.73	67.87	2.74	2.76
	Ze A	Nano Cu	2.30	2.32	13.22	13.34	67.10	68.15	2.78	2.83
		Sorbitol+ Mineral Cu	2.33	2.34	13.39	13.45	67.46	68.72	2.80	2.87
		Sorbitol+ Nano Cu	2.36	2.38	13.57	13.68	68.12	69.22	2.82	2.90
F tes	t		**	**	**	**	**	**	**	**

Table7. Effect of the studied treatments on soil properties at harvest stage during two successive seasons (2022/2023-2023/2024).

		N. mo	o ko ⁻¹	P. m	oko ⁻¹	K. m	noko ⁻¹	*WHC.%		
		Treatments	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
			season	season	season	season	season	season	season	season
Mai	n factor:	Nitrogen fertilizer rates	Season	500001	500000	5000011	Senson	Senson	Season	Season
100	% of NR	D	44.09a	45.18a	10.10a	10.32a	222.67a	225.88a	39.13a	39.43a
80 % of NRD		42.31b	43.40b	9.38b	9.56b	213.81b	216.65b	40.42a	40.35a	
F tes	st		**	**	**	**	**	**	*NS	*NS
Sub	main fac	tor : Zeolite application								
Without zeolite With zeolite F test		41.52b	42.52b	9.02b	9.19b	207.11b	209.49b	37.13b	38.27b	
		44.89a	46.05a	10.46a	10.70a	229.37a	233.04a	40.42a	41.51a	
		**	**	**	**	**	**	**	**	
Sub-	-sub main	n factor : Foliar application	n 12.01	45.01	10.02	10.00	221 77	224.02	20.50	20.201
Cont	trol anal Ca		43.91a	45.01a	10.03a	10.26a	221.77a	224.82a	38.52b	39.32bc
Sorb	eral Cu		43.03a	44.8ab	9.94a	10.18a	220.30a	225.19a	39.11a 30.18a	39.71D 40.15b
Non	nioi o Cu		43.40a 43.07a	44.500 44.20b	9.01a 0.70a	10.00a 9.86a	219.27a 217.69h	221.69a 220.60a	39.10a 38.81ab	40.130
Sorh	o cu vitol+ Mi	neral Cu	43.07a 42.76h	43.81h	9.70a 9.57a	9.71ah	217.090 215.98b	220.00a 219.08b	38 50h	40.84h
Sorb	oitol+ Na	no Cu	42,39h	43.46c	9.38ab	9.57h	214.38h	219.00b	38.53h	39.33hc
F tes	st		*	*	*	*	*	*	*	*
Inter	raction									
		Control	43.14	44.22	9.74	9.90	213.70	216.34	36.57	37.49
	÷.	Mineral Cu	43.00	44.07	9.66	9.82	213.37	215.20	36.63	37.66
	lite	Sorbitol	42.86	43.7	9.52	9.74	211.75	214.41	36.76	37.60
D	With zeo	Nano Cu	42.30	43.12	9.40	9.52	210.45	212.77	36.81	37.60
<b>IR</b>		Sorbitol+ Mineral Cu	41.94	42.90	9.27	9.36	208.23	211.15	36.48	37.58
Ę		Sorbitol+ Nano Cu	41.65	42.76	9.00	9.20	206.71	209.37	36.59	37.49
9 C		Control	46.66	47.80	11.00	11.34	238.22	241.57	41.05	37.64
° ()		Mineral Cu	46.30	47.56	10.96	11.26	237.35	240.44	41.18	42.32
10	th lite	Sorbitol	45.96	47.04	10.80	11.17	235.44	238.96	40.96	42.12
	Wi eol	Nano Cu	45.33	46.85	10.73	11.00	234.12	238.09	40.76	41.84
	^r N	Sorbitol+ Mineral Cu	45.09	46.16	10.65	10.82	232.50	237.14	41.11	41.78
		Sorbitol+ Nano Cu	44.90	46.00	10.50	10.76	230.24	235.17	41.09	42.15
		Control	41.24	42.30	8.93	9.13	205.45	208.72	37.29	42.00
	÷.	Mineral Cu	41.02	42.00	8.80	9.10	203.98	206.96	38.37	37.80
	ou lite	Sorbitol	40.87	41.96	8.71	8.94	203.60	205.73	38.40	39.23
0	eol ith	Nano Cu	40.66	41.68	8.59	8.70	202.95	204.91	37.09	39.14
<b>R</b>	8 N	Sorbitol+ Mineral Cu	40.15	41.22	8.43	8.52	202.76	204.30	37.22	37.92
Ţ,		Sorbitol+ Nano Cu	39.43	40.42	8.22	8.35	202.37	204.12	37.37	37.82
• •		Control	44.62	45.73	10.45	10.70	229.71	232.66	39.18	40.17
6	e B	Mineral Cu	44.23	45.42	10.36	10.56	226.74	230.18	40.27	41.09
×	lit,	Sorbitol	44.16	45.30	10.22	10.39	226.32	228.49	40.62	41.65
	Ceo Vi	Nano Cu	44.00	45.16	10.11	10.24	223.26	226.66	40.58	41.46
		Sorbitol+ Mineral Cu	43.86	44.97	9.96	10.16	220.45	223.73	39.19	46.08
		Sorbitol+ Nano Cu	43.58	44.66	9.80	10.00	218.20	223.44	39.07	39.88
F tes	st		**	**	*	*	**	**	**	**

***WHC= Water holding capacity** 



Fig. 4. Effect of zeolite treatments on soil available nitrogen.



Fig. 5. Effect of zeolite treatments on soil available phosphorus.



Fig. 6. Effect of zeolite treatments on soil available potassium.



Fig. 7. Effect of zeolite treatments on soil water holding capacity.

### 4. Discussion

## 4.1 Plant performance at period of 70 days from sowing

The obtained results can be attributed to several scientific factors. Higher nitrogen levels generally led to increased plant growth parameters and physiological characteristics due to the essential role of nitrogen in various metabolic processes, including protein synthesis, chlorophyll production, and enzyme activities. The availability of nitrogen directly influences plant growth and development, and thus, higher nitrogen doses typically result in superior plant performance (Mălinaş *et al.* 2022).

Zeolite's high cation exchange capacity (CEC) allows it to effectively adsorb and retain ammonium ions  $(NH_4^+)$  released from nitrogen fertilizers. By immobilizing nitrogen within its porous structure, zeolite minimizes nutrient leaching and loss, thereby extending the period of nitrogen availability to plants. This enhanced nitrogen retention contributes to improved plant growth and nutrient utilization efficiency. The results are in harmony with those of **Mosa** *et al.* (2020), Szatanik-Kloc *et al.* (2021) and El-Ghamry *et al.* (2024).

The superiority of the combined treatment of sorbitol + Nano Cu may be attributed to the following reasons. Sorbitol (sugar alcohol) serves as a biostimulant that may have enhanced the wheat plant's resilience and stress tolerance. It may have promoted nutrient uptake and translocation within the wheat plant, leading to increased nutrient use efficiency. Additionally, sorbitol could improve water uptake and retention, contributing to improved plant hydration and nutrient absorption (El-Sherpiny and Faivad 2023). On the other hand, copper is an essential micronutrient that acts as a cofactor for numerous enzymes involved in metabolic processes, including photosynthesis, respiration, and lignin synthesis. Adequate copper availability is critical for optimal plant growth and development. Nano-sized copper particles offer enhanced bioavailability and efficacy due to their smaller particle size and increased surface area, allowing for better nutrient uptake

and utilization by plants (Kumar *et al.* 2021; Sarhan and Bashandy 2021).

The synergistic interactions between nitrogen, zeolite, sorbitol, and copper likely contributed to the observed results. Zeolite's ability to enhance nitrogen retention may have potentiated the effects of sorbitol and copper by providing a stable nutrient reservoir for plants. Similarly, the biostimulant effects of sorbitol and the metabolic benefits of copper may have synergized with the improved nutrient availability facilitated by zeolite, leading to enhanced plant growth and performance.

### 4.2 Yield and its components

The observed results in Tables 5 and 6 provide valuable insights into the complex interplay practices, nutrient between agronomic management, and crop physiology, influencing yield and grain quality parameters in wheat cultivation. Firstly, the significant impact of nitrogen fertilization on grain, straw, and biological yields, as evidenced by Table 5, underscores the pivotal role of nitrogen in plant growth and development. Nitrogen is a crucial component of chlorophyll, amino acids, and proteins, essential for photosynthesis, enzyme function, and structural integrity. Higher nitrogen doses generally promote increased biomass accumulation, translating into higher grain and straw yields. Additionally, the stability of the harvest index across treatments suggests efficient resource allocation towards grain production, contributing to stable grain yields (Mălinaș et al. 2022).

Moreover, the incorporation of zeolite into the soil appears to enhance nutrient availability and utilization efficiency, as indicated by the improved grain, straw, and biological yields in Table 5. Zeolites possess ion-exchange properties, allowing them to retain and slowly release nutrients, including nitrogen, potassium, and calcium, thereby promoting sustained nutrient availability throughout the crop growth period. This, in turn, contributes to enhanced crop productivity and resilience to nutrient stress. The findings are in accordance with those

# of Sedaghat *et al.* (2022) and Elawady *et al.* (2024).

In terms of grain quality parameters depicted in Table 6, higher nitrogen doses result in increased nitrogen and protein contents in the grains, reflecting enhanced nitrogen assimilation and protein synthesis. Similarly, the incorporation of zeolite into the soil leads to higher nitrogen, protein, carbohydrates, and total sugar contents, indicating improved nutrient uptake efficiency and subsequent metabolic processes in the plant.

Furthermore, while foliar applications, including Nano copper and sorbitol, showed minor effects on yield and grain quality parameters compared to the control, the combined treatments with zeolite exhibited notable effects. This emphasizes the synergistic benefits of integrated nutrient management strategies, particularly when zeolite is utilized, in optimizing both yield and grain quality aspects of wheat cultivation (**Kumar** *et al.* 2021; **Elbatrawy** *et al.* 2023; Li *et al.* 2023).

### 4.3 Soil properties at harvest

The zeolite amendment may have been the only factor, which positively affected the soil properties at harvest. The observed effects of zeolite on soil properties, particularly its role in holding water and nutrients, can be attributed to its unique properties and interactions with the soil environment. Zeolites are microporous, aluminosilicate minerals with a highly regular structure of pores and chambers. Zeolites possess a high CEC, which allows them to attract and retain positively charged ions, including essential plant nutrients like ammonium (NH4+), potassium (K⁺), calcium (Ca²⁺), and magnesium  $(Mg^{2+})$ . This property enables zeolites to serve as reservoirs for nutrients, preventing their leaching and making them available for plant uptake over an extended period. The porous structure of zeolites enables them to adsorb and retain water molecules within their cavities through capillary action. This characteristic helps to increase soil water holding capacity (WHC) by reducing water loss through drainage and evaporation. Consequently, plants have improved access to water, especially during dry periods, leading to enhanced growth and productivity. Zeolites release nutrients gradually over time as they come into contact with soil moisture. This slowrelease mechanism ensures a continuous supply of nutrients to plant roots, promoting sustained growth and development throughout the growing season. By holding onto nutrients, zeolites prevent nutrient runoff and leaching, thereby efficiency. maximizing nutrient use Incorporating zeolite into the soil may have improved soil structure and tilth by enhancing aggregation and reducing compaction. The results align with the discoveries made by Elawady et al. (2024) and El-Ghamry et al. (2024).

### 5. Conclusion

The findings of this field experiment highlight the significant potential of zeolite amendment and foliar applications of copper, both in normal and nano forms, combined with sorbitol spray, to enhance the growth, yield, and grain quality of wheat under varying nitrogen fertilizer rates. Higher nitrogen doses generally led to improved growth parameters and grain yield, but the inclusion of zeolite in the soil substantially enhanced these effects even at reduced nitrogen levels. The synergistic benefits observed with foliar applications, particularly in nano form, further emphasize the importance of integrated nutrient management strategies in optimizing wheat production while minimizing environmental impacts. Zeolite played a crucial role in improving nutrient use efficiency, water retention, and crop resilience, particularly under conditions of nitrogen limitation. The results underscore the importance of holistic approaches to nutrient management, integrating soil amendments and foliar applications to maximize crop performance and sustainability. Overall, the findings contribute valuable insights into sustainable agricultural practices, providing practical recommendations for optimizing wheat production and minimizing nitrogen fertilizer inputs. Further research is warranted to explore the underlying mechanisms and validate the efficacy of these treatments

across diverse agro-climatic conditions and crop systems, paving the way for more sustainable and resilient agriculture in the future.

**Conflicts of interest:** Authors have declared that no competing interests exist. The authors contributed equally to put the research methodology and implementing it at all stages.

**Formatting of funding sources**: The research was funded by personal efforts of the authors.

#### 6. References

- Abd El-Aty, A., Mohamed, S., Gad, K. M., Hefny, Y. A., Shehata, M. O. (2024). Performance of some wheat (*Triticum aestivum* L.) genotypes and their drought tolerance indices under normal and water stress. Egyptian Journal of Soil Science, 64(1).
- AOAC (2000). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Aslan, M. U., Arslan, H. (2024). The Effect of Zeolites on Soil and Plant: A Review. Communications in Soil Science and Plant Analysis, 1-20.
- Chester, A. W., Derouane, E. G. (2009). Zeolite characterization and catalysis (Vol. 360). New York: Springer.
- CoStat version 6.303 copyright (1998-2004). CoHort Software 798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.
- Dane, J. H., Topp, C. G. (2020). Methods of soil analysis", Part 4: Physical methods (Vol. 20). John Wiley & Sons.
- Elawady, R. A. (2024). Can foliar application of Titanium and Zeolite Soil Addition Enhance Crisphead Lettuce Production, and Reduce N-Leaching or/and Volatilization? Egyptian Journal of Soil Science, 64(3), 699-714.
- Elbatrawy, W. S., Walaa, S., Yousif, E. E., Ghannam, H. A. (2023). Effect of sorbitol and boron on the growth and seed quality of faba bean (*Vicia faba* L.). Egyptian Journal of Agricultural Research, 101(2), 538-551.
- El-Ghamry, A., Ghazi, D. A., Elsherpiny, M. A., Kassem, M. A., Kassem, A., Helmy, A. A. (2024). Enhancing onion growth and yield quality via soil amendments and foliar nutrition under deficit irrigation. Egyptian Journal of Soil Science, 64(2), 523-542.
- El-Sherpiny, M. A., Faiyad, R. (2023). Enhancing wheat productivity under salinity conditions via composts made from agricultural by-products and sorbitol sugar. Asian Journal of Plant and Soil Sciences, 8(1), 71-84.
- Farid, I. M., Abbas, M. H., El-Ghozoli, A. (2023). Wheat productivity as influenced by integrated mineral,

organic and biofertilization. Egyptian Journal of Soil Science, 63(3), 287-299.

Gamal, R., Abou-Hadid, A. F., Omar, M. E. D., Elbana, M. (2024). Does Climate Change Affect Wheat Productivity and Water Demand in Arid Regions? Case Study of Egypt. Journal of Agriculture and Food Research, 101181.

https://doi.org/10.1016/j.jafr.2024.101181

- Gomez; K. A., Gomez, A.A (1984). Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Kumar, Y., Tiwari, K. N., Singh, T., Raliya, R. (2021). Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research, 23(3), 238-255.
- Li, J., Zhao, M., Liu, L., Guo, X., Pei, Y., Wang, C., Song, X. (2023). Exogenous sorbitol application confers drought tolerance to maize seedlings through upregulating antioxidant system and endogenous sorbitol biosynthesis. Plants, 12(13), 2456.
- Mălinaş, A., Vidican, R., Rotar, I., Mălinaş, C., Moldovan, C. M., Proorocu, M. (2022). Current status and future prospective for nitrogen use efficiency in wheat (*Triticum aestivum* L.). Plants, 11(2), 217.
- Mosa, A., El-Ghamry, A., Tolba, M. (2020). Biocharsupported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: Batch sorption-desorption and bioassay investigations. Environmental Technology & Innovation, (19): 100807.
- Peterburgski, A. V. (1968). Handbook of Agronomic Chemistry. Kolos Puplishing House, Moscow, (in Russian, pp. 29-86).
- Porra, R. J., Thompson, W. A., Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975(3), 384-394.
- Sarhan, M. G., Bashandy, S. (2021). Enhancing onion yield, quality, storability and profitability by using FYM, copper and bio-fertilizer. Egyptian Journal of Soil Science, 61(3), 323-335.
- Sedaghat, M., Hazrati, S., Omrani, M. (2022). Use of zeolite and salicylic acid as an adaptation strategy against drought in wheat plants. South African Journal of Botany, 146, 111-117.
- Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H. (2020). Methods of soil analysis. part 3: Chemical methods (Vol. 14). John Wiley & Sons.
- Szatanik-Kloc, A., Szerement, J., Adamczuk, A., Józefaciuk, G. (2021). Effect of low zeolite doses on plants and soil physicochemical properties. Materials, 14(10), 2617.
- Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W., Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.
- Watson, D. J. (1952). The physiological basis of variation in yield. Advances in agronomy, 4, 101-145.