

Egyptian Journal of Soil Science

http://ejss.journals.ekb.eg/

Maximizing Canola Productivity as a Promising Oil Crop in the Egyptian Agricultural Strategy: A Focus on Organic and Beneficial Elements ertilization

Mohamed A. E. Soliman¹, Mohamed A. El-Sherpiny² and Shimaa M. Elmahdy³

¹Soil and Water Dept., Faculty of Agriculture, Damietta University, 34517, Egypt
 ²Soil & Water and Environment Research Institute, Agriculture Research Center, Giza, 12619 Egypt
 ³Soil and Water Dept., Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

THE MINISTRY of Agriculture and Soil Reclamation (MASR) in Egypt is actively pursuing the sustainable expansion of oil crops, particularly through the cultivation of canola to shrank gap and decrease the import gap for various oil products and edible oils. Therefore, a field trials were executed to assess the potential impact of different soil additions, including a control group without soil additions (T_1) , magnesium sulphate at a rate of 30 Kg Mg fed⁻¹ (T_2), plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹ (\mathbf{T}_{3}), and a combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹ (T₄) as the main plots on canola plants. Subplots were also designated for foliar applications of beneficial elements, comprising four groups: F_1 (control), F_2 (Magnesium sulphate), F_3 (Zn-EDTA), and F_4 (Fe-EDTA) at a rate of 500 g per feddan for each beneficial element. Various parameters such as plant height (cm) No. of branches plant⁻¹, chlorophyll (SPAD reading), seed yield (ton ha⁻¹), straw yield (ton ha⁻¹), oil (%), oil yield (ton ha⁻¹), protein (%) and carbohydrates (%) were recorded during the trials. The combined treatment (T_4) emerged as the most effective soil addition, demonstrating optimal performance. Following closely in effectiveness was the use of compost alone (T_3) , with magnesium sulphate (T_2) ranking third. In contrast, the control group, which did not receive compost and magnesium sulphate, exhibited the lowest performance among the treatments. As for foliar application treatments, the descending ranking order were: F_2 (Mg element) > F_3 (Zn element) > F_4 (Fe element), > F_1 (without beneficial elements). Briefly, the combined treatment of $T_4 \times F_2$ emerged as the most superior among the various interactions studied. These findings underscore the importance of tailored soil amendments and foliar applications to maximize canola crop yields, providing valuable insights for the Ministry's strategic planning. Recommendations include widespread adoption of the T₄ x F₂ combination, further research on optimal dosage and application methods, and ongoing support for farmers in implementing these practices to bolster Egypt's self-sufficiency in oil production.

Keywords: Canola, MASR, Compost, Mg, Zn, Fe, Magnesium sulphate.

1. Introduction

The global demand for edible oils and oil-based products has steadily risen, necessitating a strategic focus on enhancing domestic oil production to bridge the gap between demand and supply (**Tokel and Erkencioglu 2021**). In Egypt, the Ministry of Agriculture and Soil Reclamation (MASR) has proactively identified the cultivation of oil crops, particularly canola, as a pivotal avenue to bolster selfsufficiency in oil production (**Faiyad** *et al.* **2023**). To achieve this goal, attention is directed not only towards increasing the overall yield of oil crops but also towards improving the composition and quality of the extracted oil (Elsherpiny et al. 2023). A critical component in optimizing oil crop production lies in the enhancement of soil health and fertility. Compost, derived from plant residues such as rice straw and soybean stover, serves as a valuable soil amendment (Rashwan et al. 2024). Its application enriches the soil, fostering a nutrient-rich environment that, in turn, contributes to improved plant growth and development (Elbaalawy et al. 2023). The intricate relationship between compost utilization and subsequent oil production underscores the importance of sustainable agricultural practices in meeting the

^{*}Corresponding author e-mail: m_elsherpiny2010@yahoo.com Received: 07/12/2023; Accepted: 28/12/2023 DOI: 10.21608/EJSS.2023.253944.1697 ©2024 National Information and Documentation Center (NIDOC)

rising demands for edible oils (Elsherpiny et al. 2023). Magnesium, an essential macronutrient, plays a multifaceted role in the improvement of oil composition. Beyond its conventional function in chlorophyll synthesis and photosynthesis, magnesium exerts influence over the fatty acid profile of oils (Chen et al. 2018). The incorporation of magnesium sulphate into the soil not only enhances plant growth but also contributes to the development of oils with desirable attributes (Elsherpiny et al. 2023). Iron (Fe) and zinc (Zn), classified as micronutrients, hold pivotal roles in various biochemical pathways within plants. In the context of oil crops, these micronutrients are integral in the synthesis of proteins and enzymes involved in oil biosynthesis (Emam 2020). The availability of iron and zinc influences the overall nutritional quality of the oil extracted, making their precise application crucial for achieving optimal yields and nutritional benefits (Faiyad et al. 2023).

The primary purpose of this study is to comprehensively evaluate the impact of different soil additions, particularly compost and magnesium sulphate and foliar applications of magnesium, iron, and zinc on canola plants. By examining various parameters such as plant height, chlorophyll content, seed yield, and oil composition, the research aims to provide valuable insights into the synergistic effects of tailored soil amendments and micronutrient applications on canola crop performance. Ultimately, the study seeks to inform strategic planning by MASR, guiding the adoption of practices that will contribute to Egypt's self-sufficiency

Table 1. Studied treatments.

in oil production and address the persistent gap between demand and availability of edible oils.

2. Materials and Methods

A field trials were executed, over two consecutive summer seasons of 2021/2022 and 2022/2023 to assess the potential impact of different soil additions, including magnesium and plant residues compost as the main plots on canola plants. While, sub plots were also designated for foliar applications of beneficial elements such as magnesium, zinc and iron. The experimental set up utilized a split-plot design with three replicates. Table 1 show the studied treatments.

Experimental site

This investigation was implemented on a privately owned farm in Met-Antar Village, Talkha District, El-Dakahlia Governorate, Egypt, (31°4'54"N -31°24'4"E).

Soil sampling and compost propertied

Table 2 displays the initial soil properties before the commencement of the experimental study, along with the characteristics of the examined compost. All analyses adhered to the methodologies outlined by **Tandon (2005).** A composting process was initiated six months before the start of the field experiment at the designated site, following the guidelines outlined by **Inckel** *et al.* (2005).

500 g per feddan

13 % Fe

	Treatments of the main factor										
Symbol	Source	Properties	Rate								
T ₁	A control group without soil additions	/	/								
T_2	Magnesium sulphate from Agro Egypt for agricultural	• Molecular mass of 120.366	30 Kg Mg fed ⁻¹								
	development company, Egypt	g mol ⁻¹									
	• A purity level of 99%.										
		• A melting point of 1.124 °C									
		• A density value of 2.66 g									
		cm ³									
T ₃	Plant residues compost (rice straw + soybean stover)	Table 2	7.0 tons fed ⁻¹								
T_4	A combined treatment of compost at a rate of 3.0 tons fee	I ⁻¹ plus magnesium sulphate at a rat	e of 15 Kg Mg fed ⁻¹								
	Treatments of the sub	main factor									
Symbol	Source	Percentage of beneficial	Rate								
		element									
\mathbf{F}_1	Without foliar application (control)	/	/								
\mathbf{F}_2	Magnesium sulphate	20.19% Mg ²⁺ by mass	500 g per feddan								
\mathbf{F}_3	Zn-EDTA from Delta Fertilizers and Chemical	14%Zn	500 g per feddan								
	Industries Company, Talkha District, El-Dakahlia										
	Governorate, Egypt.										

Governorate, Egypt.

 F_4

Fe-EDTA from Delta Fertilizers and Chemical

Industries Company, Talkha District, El-Dakahlia

Property	7	Initial soil (at a depth of 0-30 cm)	Plant compost
Available N		49.20	/
Available P	$(mg kg^{-1})$	9.130	/
Available K		222.0	/
Fe		/	0.45
Zn		/	13.2
Organic matter,%		1.290	35.0
Sand		22.00	/
Clay		49.50	/
Silt		28.50	/
Textural		Clayey	/
pH		8.35	6. 33
		(suspension 1:2.5)	(suspension 1: 10)
EC, dSm ⁻¹		3.22	4.100
Total C, %		/	20.30
Total N, %		/	1.350
C:N ratio		/	15.04

Table 2. Properties of the initial solitand compost.	Table 2.	Properties	s of the init	ial soil and	compost.
--	----------	-------------------	---------------	--------------	----------

Notes: The combined data over both studied seasons

Canola seeds

Canola seeds "Serw 4", were obtained from MASR.

Experimental set up

The experimental plot was planned with 14 rows in two rod. Planting was carried out at a rate of 3-4 seeds per hill on one side of the ridge, with a 10 cm spacing between hills. Subsequently, the thinning process was implemented, resulting in an approximate total of 70,000 plants per feddan. Specifically, on November 14^{th} , seeds were sown at a rate of 5.0 Kg fed⁻¹ during both growing seasons, and thinning occurred after the development of 4-6 true leaves.

Phosphorus fertilizer, in the form of calcium superphosphate (15.5% P_2O_5), was applied during soil tillage at a rate of 30 kg P_2O_5 per feddan. Nitrogen fertilizer, as urea (46.5% N), was applied at a rate of 30 kg N fed⁻¹ in two equal doses: the first was administered after thinning, and the second dose followed one month later. Potassium fertilizer, in the form of potassium sulphate (48% K₂O), was applied

as a single dose along with the first nitrogen dose at a rate of $24 \text{ kg } \text{K}_2\text{O}$ per feddan.

Compost, in accordance with the studied treatments, was applied before ploughing. Additionally, magnesium sulphate was applied at the same time. Foliar applications were replicated three times throughout the experiment, commencing one month after sowing with two-week intervals between each application, utilizing a volume of 600 L fed⁻¹. All agricultural practices adhered to the recommendations of the Ministry of Agriculture and Soil Reclamation (MASR), Egypt. The harvest process was conducted after 6 months on May 12th in both seasons.

Measurement traits

At 80 days after sowing as well as at harvest time (after 6 month from sowing), five plants were randomly sampled from each replicate for measuring and determining the characteristics shown in Table 3.

Table 3. Methods	, formula	, and reference	s of	f measurements.
------------------	-----------	-----------------	------	-----------------

Measurements	Methods and formula	References
After 80 da	ys from sowing canola plants	
Plant height (cm), No. of branches plant ⁻¹	Manually and visually	
Chlorophyll SPAD reading	SPAD reading(SPAD-502, Soil-Plant Analysis Development (SPAD) Section, Minolta Camera, Osaka, Japan)	Castelli <i>et al.</i> (1996)
Leaf area index	LAI = unit leaf area per plant/unit ground area occupied by plant	Adil (2012)
Digested plant samples for NPK	Mixed of HClO ₄ + H ₂ SO ₄	Peterburgski (1968)
N, P, K (%)	Micro-kjeldahl, spectrophotometrically and flame photometer, respectively	Walinga <i>et al.</i> (2013)
At har	vest stage (After 6 month)	
No of pods plant ⁻¹ , No of seeds.pod ⁻¹ ,1000 seeds weight (g), seed yield(ton.ha ⁻¹) and straw yield (ton.ha ⁻¹) Biological yield	Manually and visually	
Harvest index	HI= (Economic yield/ Biological yield) x 100	
Protein, carbohydrates and oil (% & ton ha ⁻¹)		A.O.A.C (2000)

Statistical analyses

The collected data underwent statistical analysis utilizing the analysis of variance (ANOVA) technique through CoStat version 6.303 copyrighted (1998-2004). Treatment means and the significance of differences was computed and illustrated using the Least Significant Difference (L.S.D) method as per the approach outlined by **Gomez and Gomez (1984)**. Duncan's multiple-range tests were carried out, following the methodology detailed by **Duncan** (**1995**).

3. Results

Growth criteria and chemical constituents

Table 4 depicts the impact of compost, magnesium, zinc and iron on canola growth criteria such as plant height (cm) No. of branches plant⁻¹, chlorophyll (SPAD reading), leaf area index during seasons of 2021/2022 and 2022/2023 at a period of 80 days from plant's life. While Table 5 shows the effect of the studied treatments on leaves chemical constituents of canola during seasons of 2021/2022 and 2022/2023 at a period of 80 days from plant's life. Regarding soil additions, the data reveal that the combined treatment (T₄) emerged as the most effective soil addition, demonstrating optimal performance. Following closely in effectiveness was the use of compost alone (T_3) , with magnesium sulphate alone (T₂) ranking third. In contrast, the control group (T_1) , which did not receive compost and magnesium sulphate, exhibited the lowest performance among the treatments. In terms of foliar application treatments, the ranking from most effective to least effective was as follows: F_2 (Mg element) was the most effective, followed by F_3 (Zn element), then F_4 (Fe element), and lastly, F_1 (without beneficial elements). Considering the overall context, the combined treatment of $T_4 \times F_2$ emerged as the most superior among the various interactions studied. The same trend was found during both studied seasons.

Seed and pod yield

The influence of compost, magnesium, zinc, and iron on the seed and pod yield of canola plants demonstrated significance in both seasons, as indicated by various parameters associated with yield [such as seed yield (ton.ha⁻¹), number of pods per plant, number of seeds per pod, 1000-seed weight (g), straw yield (ton.ha⁻¹), biological yield (ton.ha⁻¹), and harvest index], as presented in Tables 6 and 7. The data illustrate that the superior soil addition treatment for achieving the maximum values of all studied parameters associated with yield was T_4 treatment (compost + magnesium sulphate) followed by T_3 treatment (compost alone) then T_2 treatment (magnesium sulphate alone) and lately T_1 treatment (without both compost and magnesium sulphate). Concerning foliar applications, the F_2 (Mg element) was the superior treatment for achieving the maximum values of all studied parameters associated with yield, followed by F_3 (Zn element), then F_4 (Fe element), and lastly, F_1 (without beneficial elements). In terms of interaction effect, the combined treatment of T₄ x F₂ was the superior treatment for achieving the maximum values of all studied parameters associated with yield compared to other interactions. Consistent patterns were observed throughout the study across both seasons.

Oil yield and seed quality

The effect of compost, magnesium, zinc and iron on oil yield and seed quality of canola [oil (%), oil yield $(\tan ha^{-1})$, protein (%), protein $(\tan ha^{-1})$ and carbohydrates (%)] during seasons of 2021/2022 and 2022/2023 at a harvest is presented in Table 8. Also, Figs from 1 to 4 show the impact of the studied treatments on oil percentage and yield. Regarding soil additions, it is evident that the combined treatment (T_4) proved to be the most effective, exhibiting optimal performance in both oil yield and seed quality. Following closely in effectiveness was the use of compost alone (T_3) , with magnesium sulphate alone (T_2) ranking third and lately the control group (\mathbf{T}_1) . For foliar application treatments, the F_2 treatment (Mg element) came in the first order in terms of effectiveness, followed by F_3 (Zn element), then \mathbf{F}_4 (Fe element), and lastly, \mathbf{F}_1 (without beneficial elements). Overall, the combined treatment of $T_4 \times F_2$ emerged as the most superior compared to other interactions studied, as this combined treatment led to the maximum improvements in oil yield and quality. The same trend was found during both studied seasons.

Treatemn	omnta	Plant he	eight, cm	No. of branches plant ⁻¹		Chlorophyll,	SPAD reading	Leaf area index		
Treat	ennits	1^{st}	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
Main	factor									
Т	[1	139.34d	143.54d	9.83d	11.17d	37.97d	38.38d	3.68d	3.73d	
Т	2	145.50c	150.23c	11.17c	12.42c	39.76c	40.25c	4.08c	4.12c	
Т	3	151.61b	156.39b	12.50b	13.67b	41.31b	41.84b	4.18b	4.50b	
Т	4	159.67a	165.41a	13.92a	15.17a	42.91a	43.47a	4.73a	4.78a	
Sub n	nain fac	tor								
F	71	146.62c	150.80c	11.33b	12.58b	39.87d	40.35d	4.10c	4.14d	
\mathbf{F}_2		151.37a	156.59a	12.42a	13.58a	41.08a	41.57a	4.10c	4.41a	
F	⁷ 3	149.83ab	155.07a	12.00ab	13.33ab	40.68b	41.18b	4.28a	4.33b	
F	4	148.30b	153.11b	11.67ab	12.92ab	40.31c	40.84c	4.19b	4.25c	
Intera	ction									
T ₁	\mathbf{F}_1	137.011	141.151	9.33k	10.67i	37.33n	37.74n	3.54k	3.570	
	\mathbf{F}_2	141.44ijk	145.91ijk	10.33h-k	11.67f-i	38.54k	38.93k	3.82i	3.881	
	\mathbf{F}_3	140.23jkl	144.39jkl	10.00ijk	11.33ghi	38.191	38.601	3.73ij	3.77m	
	\mathbf{F}_4	138.68kl	142.71kl	9.67jk	11.00hi	37.80m	38.25m	3.65j	3.69n	
T ₁	\mathbf{F}_1	143.24hij	147.15ij	10.67g-k	12.00f-i	39.09j	39.63j	3.94h	3.99k	
	\mathbf{F}_2	147.81efg	153.32fg	11.67d-i	12.67d-h	40.32h	40.90g	4.22ef	4.26h	
12	\mathbf{F}_3	146.35fgh	151.66gh	11.33e-j	12.67d-h	39.93i	40.41h	4.13fg	4.17i	
T ₂	\mathbf{F}_4	144.61ghi	148.77hi	11.00f-k	12.33e-i	39.69i	40.06i	4.03gh	4.07j	
	\mathbf{F}_1	150.68ef	154.98fg	13.00c-h	13.33c-g	41.16g	41.53f	4.04e	4.43g	
T ₂	\mathbf{F}_2	153.58cd	158.37de	13.00а-е	14.33a-d	41.77e	42.39d	3.84k	4.59de	
	\mathbf{F}_3	151.86d	157.07e	12.33b-f	14.33а-е	41.37f	41.77e	4.45d	4.54e	
	\mathbf{F}_4	150.90de	155.12ef	12.50b-g	13.50b-f	41.03g	41.77e	4.41d	4.45f	
	\mathbf{F}_1	157.21bc	161.73cd	13.33a-d	14.67abc	42.31d	42.78c	4.61c	4.66d	
т	\mathbf{F}_2	162.14a	168.43a	14.67a	15.67a	43.52a	44.01a	4.83a	4.90a	
14	\mathbf{F}_3	160.33ab	166.63ab	14.00ab	15.33a	43.11b	43.72a	4.77ab	4.83b	
	\mathbf{F}_4	158.99ab	164.82bc	13.67abc	15.00ab	42.71c	43.38b	4.70bc	4.75c	

 Table 4. Effect of compost, magnesium, zinc and iron on canola growth criteria during seasons of 2021/2022 and 2022/2023 at a period of 80 days from plant's life.

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹, F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan , F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan.

Trastamate		N,	,%	Р	°,%	K,%		
Irea	atemnts	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
Main facto	or							
	T ₁	3.11d	3.14d	0.415d	0.423d	2.24d	2.26d	
T_2		3.31c	3.35c	0.451c	0.454c	2.42c	2.45c	
	T ₃	3.52b	3.58b	0.484b	0.493b	2.63b	2.66b	
	T ₄	3.72a	3.77a	0.519a	0.530a	2.80a	2.84a	
Sub main f	factor							
	F ₁	3.34c	3.38c	0.455d	0.459d	2.46d	2.49d	
	\mathbf{F}_2	3.48a	3.52a	0.479a	0.489a	2.58a	2.61a	
	F ₃	3.43ab	3.48b	0.471b	0.481b	2.54b	2.57b	
	\mathbf{F}_4	3.40b	3.45b	0.464c	0.471c	2.51c	2.54c	
Interaction	1							
	F ₁	3.03k	3.06k	0.4030	0.4111	2.20k	2.22k	
T	\mathbf{F}_2	3.18ij	3.23hi	0.4271	0.435j	2.29i	2.31i	
\mathbf{I}_1	\mathbf{F}_3	3.13j	3.16ij	0.420m	0.428jk	2.26ij	2.28ij	
	\mathbf{F}_4	3.10jk	3.13jk	0.411n	0.419kl	2.22jk	2.24jk	
	\mathbf{F}_1	3.25hi	3.28gh	0.439k	0.432j	2.35h	2.38h	
T	\mathbf{F}_2	3.37gh	3.40f	0.462h	0.471gh	2.49f	2.53f	
12	\mathbf{F}_3	3.32gh	3.36f	0.454i	0.463hi	2.44fg	2.47g	
	\mathbf{F}_4	3.30hi	3.34fg	0.448j	0.452i	2.40gh	2.43gh	
	\mathbf{F}_1	3.49ef	3.57e	0.480g	0.487g	2.60e	2.61e	
T	\mathbf{F}_2	3.56cd	3.59cd	0.492e	0.502de	2.68bc	2.73c	
13	\mathbf{F}_3	3.53d	3.63d	0.486f	0.495ef	2.63cd	2.67cd	
	\mathbf{F}_4	3.51de	3.55d	0.482f	0.488f	2.62d	2.65d	
	\mathbf{F}_1	3.64bc	3.69bc	0.505d	0.516cd	2.74b	2.78b	
T	\mathbf{F}_2	3.78a	3.83ab	0.532a	0.544a	2.85a	2.88a	
14	\mathbf{F}_3	3.74a	3.80a	0.524b	0.534ab	2.82a	2.86a	
	\mathbf{F}_4	3.71ab	3.75a	0.514c	0.524bc	2.80a	2.84a	

Table 5.	Effect of	compost,	magnesium,	zinc a	and iron	on leaves	chemical	constituents	of canola	during
	seasons o	of 2021/202	22 and 2022/2	023 at	t a period	l of 80 day	s from pla	nt's life.		

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹, F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan , F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan

		Seed yield,		No of po	ds plant ⁻¹	No of se	eds nod-1	1000 seeds		
Treat	temnts	ton	ha ⁻¹		us plant		cus pou	weig	ht,g	
		1^{st}	2 nd	1^{st}	2 nd	1^{st}	2 nd	1^{st}	2 nd	
Main fa	ctor									
]	Г ₁	1.79d	1.82d	297.17d	300.33c	19.33d	21.58d	3.63d	3.70d	
]	Γ ₂	2.02c	2.06c	318.67c	322.17b	21.75c	23.17c	3.84c	3.91c	
]	Г ₃	2.26b	2.30b	337.00b	342.33a	23.33b	24.75b	4.04b	4.11b	
]	Г4	2.48a	2.52a	353.08a	339.33a	24.83a	26.33a	4.25a	4.34a	
Sub ma	in factor									
]	F ₁	2.05c	2.09d	319.00c	323.42b	21.50c	23.33c	3.86c	3.93d	
]	F_2	2.22a	2.26a	333.25a	338.08a	23.00a	24.58a	4.02a	4.09a	
]	F ₃	2.17b	2.20b	328.50ab	332.67a	22.67ab	24.17ab	3.97ab	4.05b	
J	F ₄	2.12b	2.16c	325.17bc	310.00c	22.08bc	23.75c	3.92bc	4.00c	
Interaction										
Tı	\mathbf{F}_1	1.70m	1.73n	288.33j	291.67kl	18.00k	21.00k	3.52m	3.601	
	\mathbf{F}_2	1.88jk	1.91kl	305.67ghi	309.00ij	20.33hij	22.33h-k	3.71jkl	3.78j	
	F ₃	1.83kl	1.86lm	300.00hij	302.67jk	20.00ij	21.67ijk	3.67klm	3.75jk	
	\mathbf{F}_4	1.76lm	1.79mn	294.67ij	298.00jk	19.00jk	21.33jk	3.60lm	3.68k	
	$\mathbf{F_1}$	1.94ij	1.97jk	310.67fgh	314.00hij	21.00ghi	21.00ghi 22.67g-j		3.82ij	
т	\mathbf{F}_2	2.10gh	2.14hi	325.33de	328.67e-h	22.33d-g	2.33d-g 23.67e-h		3.99fg	
12	\mathbf{F}_3	2.05h	2.09i	321.00ef	324.67f-i	22.00eh	2.00eh 23.33fgh		3.95gh	
	$\mathbf{F_4}$	2.01hi	2.05ij	317.67efg	321.33ghi	21.67fi	23.00ghi	3.83hk	3.89hi	
	$\mathbf{F_1}$	2.23fg	2.31gh	334.33de	334.33dg	22.33cg	25.00dg	4.02eh	4.05ef	
T	\mathbf{F}_2	2.33cd	2.33de	342.33abc	354.00ad	24.67ad	25.00bcd	4.09be	4.19d	
13	\mathbf{F}_3	2.26de	2.34ef	337.67cd	336.67be	23.00ae	25.00cde	4.04cf	4.11d	
	\mathbf{F}_4	2.24ef	2.26fg	335.50de	345.00cf	23.50bf	25.00cf	4.03dg	4.09de	
	$\mathbf{F_1}$	2.39bc	2.44cd	347.33abc	353.00abc	24.33abc	25.67abc	4.17ad	4.28c	
	\mathbf{F}_2	2.55a	2.60a	358.00a	364.33a	25.33a	27.00a	4.33a	4.42a	
T ₄	\mathbf{F}_3	2.51a	2.56ab	354.33a	359.67ab	25.00a	26.67ab	4.27ab	4.37ab	
	\mathbf{F}_4	2.46ab	2.50bc	352.67ab	280.331	24.67ab	26.00abc	4.22abc	4.31bc	

Table 6. Effect of compost, magnesium, zinc and iron on seed yield, No of pods and seeds and 1000seedsweight of canola during seasons of 2021/2022 and 2022/2023 at harvest.

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹, F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan, F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan

Treatemnts		Straw	yield, ha ⁻¹	Biologi tor	cal yield, 1 ha ⁻¹	Harvest index		
ITeate	mints	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
Treatennts Main factor T1 T2 T3 T4 Sub main factor F1 F2 F3 F4 F4 <								
T	L	2.58d	2.62d	4.38d	4.45d	40.95v	40.96a	
T	2	2.86c	2.92c	4.89c	4.98c	41.40ab	41.39a	
T	3	3.18b	3.23b	5.44b	5.53b	41.55a	41.57a	
T	1	3.53a	3.55a	6.01a	6.07a	41.24ab	41.58a	
Sub main fac	tor							
\mathbf{F}_1	L	2.96c	2.97d	5.01d	5.05d	41.01a	41.28a	
\mathbf{F}_2	2	3.13a	3.19a	5.35a	5.44a	41.45a	41.46a	
F	3	3.07ab	3.12b	5.23b	5.33b	41.35a	41.35a	
F4	1	3.00bc	3.05c	5.12c	5.20c	41.33a	41.40a	
Interaction								
	$\mathbf{F_1}$	2.46k	2.50n	4.16k	4.230	40.90a	40.90a	
T ₁	\mathbf{F}_2	2.68hij	2.711m	4.56i	4.621	41.19a	41.27a	
	\mathbf{F}_{3}	2.62ijk	2.67m	4.45ij	4.52m	41.16a	41.05a	
	\mathbf{F}_4	2.58jk	2.62mn	4.34j	4.41n	40.55a	40.62a	
	\mathbf{F}_1	2.77ghi	2.82kl	4.71h	4.79k	41.15a	41.09a	
т	\mathbf{F}_2	2.96ef	3.01hi	5.06f	5.14i	41.53a	41.55a	
12	\mathbf{F}_{3}	2.91efg	2.97ij	4.95fg	5.05i	41.32a	41.30a	
	\mathbf{F}_4	2.82fgh	2.88jk	4.83gh	4.93j	41.59a	41.61a	
	$\mathbf{F_1}$	3.14de	3.15gh	5.37e	5.46h	41.56a	42.32a	
т	\mathbf{F}_2	3.27bc	3.38de	5.60c	5.71e	41.58a	40.77a	
13	\mathbf{F}_{3}	3.19cd	3.19ef	5.46d	5.53f	41.48a	42.35a	
	\mathbf{F}_4	3.14cd	3.24fg	5.38d	5.49g	41.59a	41.08a	
	\mathbf{F}_1	3.53a	3.42cd	5.93b	5.86d	40.42a	41.61a	
т	\mathbf{F}_2	3.60a	3.67a	6.15a	6.26a	41.44a	41.46a	
14	\mathbf{F}_3	3.54a	3.60ab	6.04ab	6.15b	41.48a	41.55a	
	$\mathbf{F_4}$	3.45ab	3.50bc	5.91b	6.00c	41.61a	41.69a	

Table 7.	Effect of compost,	magnesium,	zinc an	d iron o	on straw	and	biological	yield	and	harvest	index
	during seasons of 2	2021/2022 and	2022/20	23 at h	arvest.						

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹, F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan , F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan

Treatemnts		Oil	, %	Oil yield	, ton ha ⁻¹	Protein, %		Protein,	ton ha ⁻¹	Carbohydrates, %	
		1 st	2 nd	1 st	2 nd	1 st	2 nd	1^{st}	2 nd	1 st	2 nd
Main	factor	season	season	season	season	season	season	season	season	season	season
	T	25 574	26 124	0 6274	0 65 94	17 994	19 09 4	0.2214	0.2204	12 164	12 204
	1 1	55.570	30.120	0.0374	0.0380	17.880	18.080	0.3210	0.3290	12.100	12.500
T_2		36.42c	36.99c	0./3/c	0.762c	19.03c	19.24c	0.385c	0.397c	12.82c	12.97c
	T ₃	37.32b	38.00b	0.844b	0.874b	20.22b	20.56b	0.457b	0.473b	13.54b	13.76b
,	T ₄	38.08a	38.62a	0.944a	0.974a	21.38a	21.65a	0.530a	0.546a	14.26a	14.44a
Sub n	nain fact	or									
	F ₁	36.54b	37.07c	0.752d	0.776d	19.21c	19.43c	0.398c	0.409d	12.96d	13.11d
	\mathbf{F}_2	37.15a	37.72a	0.827a	0.854a	19.99a	20.26a	0.447a	0.461a	13.42a	13.61a
	F ₃	36.94ab	37.58a	0.802b	0.831b	19.74ab	20.02b	0.431b	0.445b	13.27b	13.45b
	F ₄	36.76ab	37.36b	0.781c	0.808c	19.57b	19.81b	0.418b	0.431c	13.13c	13.30c
Intera	action										
	\mathbf{F}_1	35.20j	35.69m	0.5980	0.617n	17.42k	17.60k	0.296n	0.304n	12.00n	12.12k
	\mathbf{F}_2	35.93hij	36.47jk	0.674lm	0.695kl	18.29ij	18.57hi	0.343kl	0.354kl	12.33lm	12.53ij
T ₁	\mathbf{F}_3	35.66ij	36.31k	0.653mn	0.674lm	18.00j	18.17ij	0.329lm	0.337lm	12.22mn	12.33jk
	\mathbf{F}_4	35.48ij	36.021	0.625no	0.645mn	17.83jk	17.98jk	0.314mn	0.322mn	12.10mn	12.21k
	\mathbf{F}_1	36.16hi	36.73ij	0.700kl	0.722jk	18.69hi	18.88gh	0.362jk	0.371jk	12.58kl	12.73hi
_	\mathbf{F}_2	36.71e-h	37.26g	0.771hi	0.796h	19.36fg	19.55f	0.407hi	0.418hi	13.03hi	13.17fg
T_2	F ₃	36.fgh52	37.07gh	0.747ij	0.774hi	19.11gh	19.34f	0.391i	0.404i	12.92ij	13.07g
	\mathbf{F}_4	36.3ghi0	36.90hi	0.729jk	0.756ij	18.98gh	19.19fg	0.381ij	0.393ij	12.75jk	12.91gh
	\mathbf{F}_1	37.24dg	37.68f	0.832gh	0.871g	20.05ef	20.53e	0.448gh	0.475g	13.43gh	13.62e
	\mathbf{F}_2	37. 52 ad	38.33cde	0.873de	0.892de	20.49cd	20.66cd	0.477de	0.481de	13.75de	13.98d
T ₃	F ₃	37.35be	38.02de	0.845ef	0.890ef	20.28d	20.87d	0.459ef	0.488ef	13.57ef	13.83de
	\mathbf{F}_4	37.27cf	38.08e	0.833fg	0.859fg	20.18de	20.38d	0.451fg	0.460fg	13.46fg	13.62e
	\mathbf{F}_1	37.78ad	38.30cd	0.904cd	0.933cd	20.95bc	21.20bc	0.502cd	0.516cd	14.01cd	14.15cd
	\mathbf{F}_2	38.37a	38.89a	0.979a	1.010a	21.74a	22.00a	0.554a	0.571a	14.51a	14.71a
T ₄	F ₃	38.18ab	38.75ab	0.957ab	0.991ab	21.52a	21.85a	0.539ab	0.559ab	14.33ab	14.52ab
	$\mathbf{F_4}$	38.00abc	38.52bc	0.935bc	0.963bc	21.31ab	21.56ab	0.524bc	0.539bc	14.19bc	14.37bc

Table 8. Effect of compost, magnesium, zinc and iron on oil yield and seed quality of canola during seasons of 2021/2022 and 2022/2023 at a harvest.

T₁: Control group without soil additions, **T**₂: Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, **T**₃: Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, **T**₄: Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹, **F**₁: Control group without foliar applications, **F**₂: Magnesium sulphate at a rate of 500 g per feddan , **F**₃: Zn-EDTA at a rate of 500 g per feddan and **F**₄: Fe-EDTA at a rate of 500 g per feddan

Fig. 1. Effect of compost and magnesium sulphate as soil additions on oil percentage of canola during seasons of 2021/2022 and 2022/2023 at a harvest.

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹.

Fig. 2. Effect of compost and magnesium sulphate as soil additions on oil yield of canola during seasons of 2021/2022 and 2022/2023 at a harvest.

 T_1 : Control group without soil additions, T_2 : Magnesium sulphate at a rate of 30 Kg Mg fed⁻¹, T_3 : Plant residues compost (rice straw + soybean stover) at a rate of 7.0 tons fed⁻¹, T_4 : Combined treatment of compost at a rate of 3.0 tons fed⁻¹ plus magnesium sulphate at a rate of 15 Kg Mg fed⁻¹.

Fig. 3. Effect of iron, zinc and magnesium as foliar application on oil percentage of canola during seasons of 2021/2022 and 2022/2023 at a harvest.

 F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan, F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan.

Fig. 4. Effect of iron, zinc and magnesium as foliar application on oil yield of canola during seasons of 2021/2022 and 2022/2023 at a harvest.

 F_1 : Control group without foliar applications, F_2 : Magnesium sulphate at a rate of 500 g per feddan, F_3 : Zn-EDTA at a rate of 500 g per feddan and F_4 : Fe-EDTA at a rate of 500 g per feddan.

4. Discussion

Growth criteria and chemical constituents

The observed results can be attributed to several scientific factors related to the impact of compost, magnesium, zinc, and iron on canola growth and chemical constituents. The combined treatment (compost + magnesium sulphate) likely provided a balanced and optimal mix of magnesium and other nutrients, enhancing nutrient availability and uptake by canola plants. Compost, being an organic amendment, can improve soil structure and fertility. The positive effects of T_4 and T_3 may be attributed to enhanced soil conditions, promoting better root development and nutrient absorption. Magnesium (\mathbf{F}_2) is a crucial component of the chlorophyll molecule, which is vital for photosynthesis. The higher effectiveness of \mathbf{F}_2 in the foliar application may have resulted in improved chlorophyll content (SPAD reading) and subsequently enhanced plant growth. Zinc (\mathbf{F}_3) and iron (\mathbf{F}_4) play key roles in activating enzymes involved in various metabolic processes. Their effectiveness in foliar applications might have positively influenced biochemical reactions within the plant, contributing to overall growth and development. The superior performance of the combined treatment $(T_4 \times F_2)$ suggests synergistic effects. Magnesium (F_2) might have complemented the nutrient balance provided by T_4 , resulting in enhanced growth criteria and optimized chemical constituents in canola plants. The consistent trend observed in both seasons reinforces the reliability and robustness of the observed effects. It indicates that the positive interactions between soil additions and foliar applications were not influenced by seasonal variations but held true across different growing conditions. The results are in harmony with those of Chen et al. (2018), Emam (2020), Hussein et al. (2022) and Elbaalawy et al. (2023).

Seed and pod yield

The observed results in the context of the impact of compost, magnesium, zinc, and iron on the seed and pod yield of canola plants can be explained through various scientific principles. The combination of compost and magnesium sulphate (T_4) likely provided a synergistic effect, offering a balanced supply of essential nutrients. Compost enhances soil organic matter, while magnesium is crucial for photosynthesis and enzyme activation. The combined treatment promotes overall plant growth, resulting in improved seed and pod yield. Compost alone (T_3) came in the second order due to the compost, being an organic source of nutrients, enhancing soil structure,

water retention, and microbial activity. These factors contribute to improved nutrient availability, root development, and ultimately higher seed and pod yield. Regarding magnesium sulphate alone (T_2) as well as magnesium element (\mathbf{F}_2), magnesium is a vital component of chlorophyll, essential for photosynthesis. Both soil application (T_2) and foliar application (\mathbf{F}_2) of magnesium contribute to chlorophyll synthesis, leading to increased energy production and higher yields. Zinc and iron play key roles in enzyme activation and various metabolic processes. Foliar application of these elements (F_3 and \mathbf{F}_4) likely enhances nutrient uptake and enzymatic reactions, positively influencing seed and pod yield. The superior performance of the combined treatment (T₄ x F₂) may result from a harmonious interaction between soil additions and foliar applications. Magnesium, in particular, seems to play a crucial role in maximizing the benefits of both treatments, leading to enhanced yield parameters. The consistent patterns observed across both seasons suggest that the positive effects of the treatments are not influenced by seasonal variations. This stability indicates the robustness and reliability of the observed results. The results align with those reported by Elsherpiny et al. (2023) and Faiyad et al. (2023).

Oil yield and seed quality

This study delves into the intricate mechanisms by which magnesium influences oil composition, shedding light on its potential to be harnessed as a tool for quality enhancement in the context of oil crops. The combined application of compost, and magnesium sulphate (T_4) likely provided a comprehensive nutrient supply. This balanced combination promotes optimal plant growth, influencing both oil yield and seed quality positively. Compost alone (T_3) , derived from plant residues, contributes organic matter to the soil. This enrichment fosters a nutrient-rich environment, supporting improved plant growth and, subsequently, enhancing oil yield and seed quality. Magnesium, in addition to its traditional roles in chlorophyll synthesis and photosynthesis, influences the fatty acid profile of oils. The effectiveness of T_2 and F_2 treatments suggests that magnesium plays a crucial role in achieving desirable oil attributes. Magnesium, an essential macronutrient, plays a multifaceted role in the improvement of oil composition. It exerts influence over the fatty acid profile of oils. The incorporation of magnesium sulphate into the soil not only enhances plant growth but also contributes to the development of oils with desirable attributes. Foliar application of magnesium (F_2) , zinc (F_3) and iron (F_4) demonstrates the importance of these micronutrients in influencing oil yield and quality. Magnesium, in particular, emerges as the most effective, followed by zinc and iron. Iron (Fe) and zinc (Zn), classified as micronutrients, hold pivotal roles in various biochemical pathways within plants. In the context of oil crops, these micronutrients are integral in the synthesis of proteins and enzymes involved in oil biosynthesis. Generally, the observed results can be attributed to a combination of nutrient synergy, organic enrichment, the specific role of magnesium in oil composition, and the influence of micronutrients on oil biosynthesis. The interaction effects further emphasize the importance of considering multiple factors for optimizing oil yield and quality in canola plants. The results are in harmony with those of Chen et al. (2018), Emam (2020), Elbaalawy et al. (2023), Elsherpiny et al. (2023) and Faiyad et al. (2023).

5. Conclusion

According to the obtained results, it can be concluded that the combined treatment of compost and magnesium sulphate (T_4) was the most effective soil addition, showcasing optimal performance across various parameters. In terms of foliar application treatments, magnesium (\mathbf{F}_2) was identified as the most effective. Generally, these findings underscore the importance of tailored soil amendments and foliar applications to maximize canola crop yields, providing valuable insights for the Ministry's strategic planning. Recommendations include widespread adoption of the $T_4 \times F_2$ combination, further research on optimal dosage and application methods, and ongoing support for farmers in implementing these practices to bolster Egypt's self-sufficiency in oil crops.

Conflicts of interest

Authors have declared that no competing interests exist.

Formatting of funding sources: The research was funded by the personal efforts of the authors.

5. References

Adil, A. M. (2012). An evaluation for some methods of measuring leaf area for a group of ornamental plants &compare it with traditional methods. Journal of Kirkuk University For Agricultural Sciences, 3(1).

- **AOAC (2000).**" Official Methods of Analysis". 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Castelli, F., Contillo, R., & Miceli, F. (1996). Nondestructive Determination of Leaf Chlorophyll Content in Four Crop Species 1. Journal of Agronomy and Crop Science, 177(4): 275-283.
- Chen, Z. C., Peng, W. T., Li, J., & Liao, H. (2018). Functional dissection and transport mechanism of magnesium in plants. In Seminars in cell & developmental biology (Vol. 74, pp. 142-152). Academic Press
- **Duncan, D. B. (1955).** Multiple range and multiple F tests. Biometrics, 11(1), 1-42.
- Elbaalawy, A. M., Tantawy, M. F., Abd Elhafez, E., & Nada, W. M. (2023). Sulphur compost properties and its amelioration effect on salt affected soil characteristics and productivity. Egyptian Journal of Soil Science, 63(3), 339-354.
- **Elsherpiny, M. A., Baddour, A., & Kany, M. (2023).** Effect of organic and bio fertilization and magnesium foliar application on soybean production. Egyptian Journal of Soil Science, 63(1), 127-141.
- **Emam, S. (2020).** Estimation of straw, seed and oil yields for flax plants (*Linum usitatissimum* L.) cultivars of foliar application of Mn, Fe and Zn under dry environment. Egyptian Journal of Agronomy, 42(1), 35-46.
- Faiyad, R.M, El-Azeiz, E.H. & Yousif, E.E (2023). Effect of Sulfur, Boron, Zinc and Iron on Canola under Salt Affected Soils. Egyptian Journal of Soil Science, 63(4).
- Gomez; K. A and Gomez, A.A (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Hussein, M., Ali, M., Abbas, M. H., & Bassouny, M. A. (2022). Composting animal and plant residues for improving the characteristics of a clayey soil and enhancing the productivity of wheat plant grown thereon. Egyptian Journal of Soil Science, 62(3), 195-208.
- Inckel, M., de Smet, P., Tersmette, T., & Veldkamp, T. (2005). The preparation and use of compost (Vol. 27). Wageningen, The Netherlands: Agromisa.
- Peterburgski, A. V. (1968)."Handbook of Agronomic Chemistry". Kolos Puplishing House, Moscow (in Russian, pp. 29-86).
- Rashwan, B. R. (2024). Impact of cultivation methods and fertilization by EM (Effective microorganisms) and/or compost on Productivity and water use efficiency of wheat (*Triticum aestivum* L.). Egyptian Journal of Soil Science, 64(1).
- **Tandon, H. L. S. (2005).** Methods of analysis of soils, plants, waters, fertilizers & organic manures. Fertilizer Development and Consultation Organization.
- Tokel, D., & Erkencioglu, B. N. (2021). Production and trade of oil crops, and their contribution to the world economy. Oil crop genomics, 415-427.
- Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W. and Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.