

# **Egyptian Journal of Soil Science**

http://ejss.journals.ekb.eg/



## Enhancing Soybean Productivity in Saline Soil Conditions: Synergistic Effects of Organic Fertilizer and Proline Co-Application

Hayam A. El-Shaboury, Noha R. Ibrahim and Mohamed A. El-Sherpiny



Soil & Water and Environment Research Institute, Agriculture Research Center, Giza, 12619 Egypt

> FFICIENTLY optimizing strategic crop production in Egypt's degraded soils is imperative to address the nutritional gap and ensure food security. Consequently, a field trial was conducted over two consecutive summer seasons (2022 and 2023) to evaluate the potential impact of various organic fertilization sources as the main plots on soybean plant cultivated in soil with an EC value of 6.45 dsm<sup>-1</sup>. The organic treatments included a control group without organic fertilizers  $(I_0)$ , farmyard manure (FYM) compost  $(I_1)$ , plant residues (PR) compost  $(I_2)$  and chicken manure (ChM) compost  $(I_3)$ . Additionally, the subplots were designated for foliar applications of proline amino acid, with three groups:  $F_0$  (without foliar application, serving as the control),  $\mathbf{F}_1$  (proline at a rate of 60 mg L<sup>-1</sup>), and  $\mathbf{F}_2$  (proline at a rate of 100 mg L<sup>-1</sup>) <sup>1</sup>). The study assessed various parameters at two stages: 80 days from sowing, focusing on growth indicators such as plant height, foliage fresh and dry leaf weights, and chlorophyll content and antioxidant indicators. At the harvest stage, yield-related parameters and quality aspects like the number of pods per plant, seed yield, oil, protein, carbohydrates, along with the analysis of soil nutrient availability. The results obtained illustrated that ChM compost  $(I_3)$  proved to be the most effective organic source in promoting optimal performance under salinity conditions, as evidenced by superior growth indicators, yield-related parameters, and quality. Following closely was PR compost ( $I_2$ ), with FYM compost ( $I_1$ ) ranking third, while the control group (without organic fertilizers) exhibited the lowest performance. In addition, the findings highlight the positive impact of proline amino acid on enhancing plant tolerance to salinity stress, with performance improvements correlating with increased proline levels. The sequence of proline treatments, ranked from most effective to least, was  $F_2$ , followed by  $F_1$ , then  $F_0$  (without proline). Analyzing soil fertility at the harvest stage, all organic sources positively influenced the availability of N, P, and K, with ChM compost  $(I_3)$  demonstrating superior effects. The influence of proline was nearly negligible in this aspect. Overall, the combined treatment of I<sub>3</sub> x F<sub>2</sub> emerged as the most distinguished among the various interactions studied. Therefore, integrated approaches that combine optimal organic fertilization practices with proline applications, such as the studied combination of ChM compost and proline, should be promoted for enhanced soybean production. Ongoing research is essential to refine and expand these recommended practices for a comprehensive and sustainable approach to soybean cultivation in challenging soil conditions.

Keywords: Degraded soils, Chicken manure, Farmyard manure, Compost and Proline.

## 1. Introduction

Soil salinity is a formidable impediment to global agricultural sustainability, exerting deleterious effects growth and productivity. on plant Elevated concentrations of soluble salts, notably sodium chloride, disrupt the intricate balance of water and nutrient uptake by plant roots, leading to osmotic stress, ion toxicity, and compromised cellular functions (Munns et al. 2020). Despite these challenges, the imperative to cultivate saline lands persists, driven by the pressing need to expand agricultural frontiers to meet the escalating demands for food production (Elsherpiny 2023).

The paradox lies in the recognition that while soil salinity threatens crop health, it is imperative to manage and cultivate such lands efficiently to harness their potential for agriculture. Effective management strategies are crucial to mitigate salinity's negative impacts and unlock the latent agricultural productivity of these challenging soils. Among these strategies, organic fertilization emerges as a pivotal tool in ameliorating the adverse effects of salinity (Abou Hussien *et al.* 2020).

Organic fertilization, through the incorporation of organic amendments such as farmyard manure (FYM), chicken manure (ChM), and plant residues (PR) compost, assumes a central role in enhancing soil

<sup>\*</sup>Corresponding author e-mail: m\_elsherpiny2010@yahoo.com Received: 01/12/2023; Accepted: 26/12/2023 DOI: 10.21608/EJSS.2023.252553.1695 ©2024 National Information and Documentation Center (NIDOC)

structure, water retention, and nutrient availability. In saline lands, where conventional fertilization practices may exacerbate salt accumulation, the judicious application of organic matter becomes paramount (Elbaalawy *et al.* 2023).

Furthermore, recognizing the need for innovative approaches to enhance plant tolerance to salinity, the study incorporates proline amino acid as a potential solution. Proline, known for its osmoprotectant properties, is pivotal in alleviating the physiological stress induced by salinity. By investigating the impact of varying through foliar applications (Abd-Elzaher *et al.* 2022; Abdeen and Hefni, 2023).

Soybeans, chosen as this study's focal crop have economic and nutritional significance. As a versatile legume, soybeans contribute substantially to global protein and oil production, playing a crucial role in human and livestock nutrition. Understanding and enhancing soybean performance under saline conditions is thus not only imperative for global food security (Elsherpiny *et al.* 2023).

Considering these considerations, the overarching goal of this experiment is to provide a comprehensive understanding of the interplay between organic fertilization, proline amino acid application, and soybean cultivation in saline soils. Through meticulous evaluation of growth indicators, yield-related parameters, and soil nutrient dynamics, the study aspires to contribute practical insights toward developing sustainable and integrated approaches for soybean production in regions grappling with soil salinity. The aim is to devise strategies that optimize yields, ensuring agricultural resilience and nutritional security in the face of escalating salinity challenges.

## 2. Material and Methods

A field trial was conducted under a split plot design with three replicates over two consecutive summer seasons (2022 and 2023) to evaluate the potential impact of various organic fertilization sources as the main plots on soybean plant cultivated in soil with an electric conductivity (EC) value of 6.45 dSm<sup>-1</sup>. These sources included a control group without organic fertilizers (**I**<sub>0</sub>), farmyard manure (FYM) compost at a rate of 10 ton fed<sup>-1</sup> (**I**<sub>2</sub>) and chicken manure (ChM) compost a rate of 10 ton fed<sup>-1</sup> (**I**<sub>2</sub>) and chicken manure (ChM) compost a rate of 10 ton fed<sup>-1</sup> (**I**<sub>3</sub>). Additionally, the subplots were designated for foliar applications of proline amino acid, with three groups: **F**<sub>0</sub> (without foliar application, serving as the control), **F**<sub>1</sub> (proline at a rate of 60 mg L<sup>-1</sup>), and **F**<sub>2</sub> (proline at a rate of 100 mg L<sup>-1</sup>).

## **Experimental location**

The research was conducted on a private farm in Met Antar village, Talkha district, El-Dakahlia Governorate, Egypt, with coordinates 31°4'54"N -31°24'4"E.

## Soil sampling and compost sources traits

Before the experimental study, soil samples were gathered from 30 cm depth. These samples underwent air-drying, sieving through a 2 mm sieve, and analysis of their characteristics. The soil properties before the experimental study are presented in Table 1. The characteristics of the studied compost sources are also shown in Table 1. All analyses were conducted according to the methodologies outlined by **Tandon (2005)**.

| Property                      | Initial soil | ChM compost | FYM compost    | Plant compost  |
|-------------------------------|--------------|-------------|----------------|----------------|
| pH                            | 8.2          | 6.16        | 6.43           | 6.25           |
|                               | (suspension  | (suspension | (suspension 1: | (suspension 1: |
|                               | 1:2.5)       | 1:10)       | 10)            | 10)            |
| EC, $dSm^{-1}$                | 6.45         | 3.52        | 3.56           | 3.49           |
| Total C, %                    | /            | 17.69       | 19.69          | 19.88          |
| Total N, %                    | /            | 1.130       | 1.08           | 1.13           |
| C:N ratio                     | /            | 15.65       | 18.23          | 17.59          |
| Available                     | 51.20        | /           | /              | /              |
| Available P                   | 10.25        | /           | /              | /              |
| Available $mg_{1}kg^{-}$<br>K | 210.0        | /           | /              | /              |
| Fe                            | /            | 1.20        | 0.85           | 0.99           |
| Zn                            | /            | 27.0        | 22.3           | 24.2           |
| Mn                            |              | 110         | 98.2           | 104.3          |
| Organic matter,%              | 1.360        | 30.42       | 33.86          | 34.10          |
| Sand                          | 24.00        | /           | /              | /              |
| Clay                          | 49.00        | /           | /              | /              |
| Silt                          | 27.00        | /           | /              | /              |
| Textural                      | Clay         | /           | /              | /              |

 Table 1. Properties of the initial soil and the studied compost sources (The data presented in this Table is the combined data over both studied seasons).

#### **Compost preparation**

Plant residues, specifically rice straw, animal residues from cows and sheep and poultry waste, were acquired to serve as representations of plant compost, farmyard manure (FYM), and chicken manure (ChM) compost, respectively. The composting procedure for these three types was initiated six months before the commencement of the field experiment at the experimental site, according to instructions of **Inckel** *et al.* (2005).

#### Soybean seeds

Soybean seeds "*Glycine max* L. Cv Giza 111", were obtained from agricultural research center ARS.

## Proline

Proline amino acid was purchased from the commercial market in Egypt and then dissolved in distilled water to achieve the desired concentrations.

#### Experimental set up

The experimental plot, spanning  $120 \text{ m}^2$ , underwent an addition of calcium superphosphate (6.6%P) at a rate of 150 kg fed<sup>-1</sup> before ploughing. Additionally, all examined compost sources were applied before ploughing by designated treatments. On the 26<sup>th</sup> of May in both study seasons, seeds were manually sown after inoculation with rhizobium at a rate of 38 kg fed<sup>-1</sup> (2-3 seeds hill<sup>-1</sup>). At sowing time, a nitrogen dose of 15.0 kg urea fed<sup>-1</sup> (46% N) was uniformly distributed across all plots. After 20 days from sowing, plant thinning was conducted to retain one soybean plant per hill. Potassium sulfate (48% K<sub>2</sub>O) was introduced in two equal installments, with a basal application of 50 kg fed<sup>-1</sup> and the remaining half applied two months after sowing. Proline was sprayed three times during the experiment, following the studied rates, at 35, 50, and 65 days from cultivation, using a volume of 490 L fed<sup>-1</sup>.The agricultural practices were done in line with the recommendations of the ARS, Egypt. Harvesting occurred 120 days after sowing (25<sup>th</sup> of September).

#### Measurement traits

At 75 (flowering stage) and 120 days after sowing (harvest time), three plants were randomly sampled from each replicate to estimate the characteristics presented in Table 2.

#### Statistical analysis

Statistical analyses were performed utilizing CoStat version 6.303 copyrighted (1998-2004), as documented by **Gomez and Gomez (1984)**, following the methodology detailed by **Duncan (1995).** 

| Measurements                                                                                                                       | Methods and formula                                                          | References                      |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|
| After 75 d                                                                                                                         | ays of sowing soybean plants                                                 |                                 |
| Proline content ( $\mu gg^{-1}$ FW)                                                                                                | Colourimetric measurement                                                    | Ábrahám <i>et al.</i><br>(2010) |
| Malondialdehyde (MDA, $\mu$ mol.g <sup>-1</sup> FW)                                                                                | Spectrophotometrically                                                       | Mendes <i>et al.</i><br>(2009). |
| Peroxidase (POX, unit mg <sup>-1</sup> protein <sup>-1</sup> ), and superoxide (SOD, unit mg <sup>-1</sup> protein <sup>-1</sup> ) | Spectrophotometrically                                                       | Alici and Arabaci<br>(2016)     |
| Plant height (cm), foliage fresh and dry weights (g plant <sup>-1</sup> )                                                          | Manually and visually                                                        |                                 |
| Digested plant samples for NPK                                                                                                     | Mixed of $HClO_4 + H_2SO_4$                                                  | Jones and Case<br>(1990)        |
|                                                                                                                                    | Micro-kjeldahl, spectrophotometrically and                                   | Walinga <i>et al</i> .          |
| N, P, K (%)                                                                                                                        | flame photometer, respectively                                               | (2013)                          |
| Chlorophyll pigment levels (a and b, mg $g^{-1}$ )                                                                                 | Spectrophotometrically using acetone                                         | Branisa <i>et al.</i><br>(2014) |
| At the harvest stage (A                                                                                                            | fter 120 days from sowing soybean plants)                                    |                                 |
| No. of pods plant <sup>-1</sup> , pod and seed weights ( g plant <sup>-1</sup> ), seed yield ( Kg fed <sup>-1</sup> )              | Manually and visually                                                        |                                 |
| Protein, carbohydrates and oil (%)                                                                                                 |                                                                              | A.O.A.C (2000)                  |
| Available soil N, P, K ( mg kg <sup>-1</sup> )                                                                                     | Micro-kjeldahl, spectrophotometrically and<br>flame photometer, respectively | Tandon (2005)                   |

#### 3. Results

## Enzymatic and non-enzymatic antioxidants

Table 3 depicts the impact of different compost sources and varying proline concentrations on the proline content (µg.g<sup>-1</sup> FW), malondialdehyde (MDA, µmolg<sup>-1</sup> FW), peroxidase enzyme activity (POX, unit mg<sup>-1</sup> protein<sup>-1</sup>), and superoxide dismutase (SOD, unit mg<sup>-1</sup> protein<sup>-1</sup>) levels in soybean leaves after 75 days from sowing in the 2022 and 2023 seasons. The results reveal that soybean plants cultivated without compost exhibited the highest values for both proline and MDA. Conversely, including any compost source led to a reduction in both proline and MDA levels, with ChM compost demonstrating the lowest values, followed by plant compost and FYM compost. On the other hand, the optimal treatment for achieving maximum peroxidase enzyme activity (POX, unit mg<sup>-1</sup> protein<sup>-1</sup>) and superoxide dismutase (SOD, unit mg<sup>-1</sup> protein<sup>-1</sup>) values was ChM compost, followed by plant compost then FYM compost, and lately the control treatment, which received no compost source. In terms of proline treatments, it can be noticed from Table 2 that all studied traits, except MDA indicator, gradually increased as the proline rate increased from 0.0 to 60 then 100 mg  $L^{-1}$ . Regarding the MDA, indicator, its value gradually decreased as the proline rate increased from 0.0 to 60 then 100 mg  $L^{-1}$ . Generally, the combined application of ChM compost and proline spray at a rate of 100 mg L<sup>-1</sup> demonstrated the most effective performance under salinity conditions.

#### Growth criteria and chemical constituents

The impact of different compost sources and proline rates on the performance of soybean plants grown on saline soil was significant, as reflected in various growth criteria [plant height (cm), foliage fresh and dry weights (g plant<sup>-1</sup>)], (Table 4) and leaf chemical constituents (N, P, K ,%) along with chlorophyll pigment levels (a and b, mg g<sup>-1</sup>) (Table 5). The data of Tables 4 and 5 illustrated that ChM compost (I<sub>3</sub>) proved to be the most effective organic source in promoting optimal performance under salinity conditions, as evidenced by superior growth and chemical indicators. Following closely was PR compost  $(I_2)$ , with FYM compost  $(I_1)$  ranking third, while the control group (without organic fertilizers) exhibited the lowest performance. In addition, the findings highlight the positive impact of proline amino acid on enhancing plant tolerance to salinity stress, with performance improvements correlating with increased proline levels. The sequence of proline treatments, ranked from most effective to least, was  $F_2$ , followed by  $F_1$ , and lastly,  $F_0$ (without proline). Overall, the combined treatment of  $I_3$  $\mathbf{x} \mathbf{F}_2$  emerged as the most superior among the various interactions studied.

#### Yield and its components

The impact of diverse compost sources and proline rates on parameters related to yield (No. of pods plant<sup>-1</sup>, pod and seed weights in g plant<sup>-1</sup>, seed yield in Kg fed<sup>-1</sup>) and quality (protein, carbohydrates, and oil in %) is presented in Tables 6 and 7, respectively. The results indicate that ChM compost  $(I_3)$  was the most effective organic source in promoting optimal performance under salinity conditions, as demonstrated by superior yield-related parameters and quality. Following closely was PR compost  $(I_2)$ , with FYM compost  $(I_1)$  ranking third, while the control group (without organic fertilizers) exhibited the lowest performance.

Moreover, the findings underscore the positive impact of proline amino acid in enhancing plant tolerance to salinity stress, with performance improvements corresponding to increased proline levels. The sequence of proline treatments, ranked from most effective to least, was  $F_2$ , followed by  $F_1$ , and lastly,  $F_0$  (without proline). Overall, the combined treatment of  $I_3 \times F_2$  emerged as superior among the various interactions studied, showcasing comprehensive enhancements in yield-related parameters and quality.

| Table 3. Effect of various compost sources and prolin | e on leaves proline content, MDA indicator and plant's self-    |
|-------------------------------------------------------|-----------------------------------------------------------------|
| production of enzymatic antioxidants (POX a           | nd SOD) at a period of 75 days from soybean plant's life during |
| seasons of 2022 and 2023.                             |                                                                 |

| T                                                  | Proline                |          | Malondialdehyde<br>(MDA) |                     | Peroxidase (POX)       |          | Superoxide (SOD)        |                 |
|----------------------------------------------------|------------------------|----------|--------------------------|---------------------|------------------------|----------|-------------------------|-----------------|
| Treatments                                         | (µgg <sup>-1</sup> FW) |          | (µmol ş                  | g <sup>-1</sup> FW) | (unit mg <sup>-1</sup> |          | protein <sup>-1</sup> ) |                 |
|                                                    | 1 <sup>st</sup>        | $2^{nd}$ | $1^{st}$                 | $2^{nd}$            | 1 <sup>st</sup>        | $2^{nd}$ | 1 <sup>st</sup>         | 2 <sup>nd</sup> |
|                                                    |                        |          | Compost t                | reatments           |                        |          |                         |                 |
| <b>I</b> <sub>0</sub> : Without                    | 8.22a                  | 8.41a    | 12.37a                   | 12.55a              | 1.552d                 | 1.611d   | 43.68d                  | 44.19d          |
| <b>I</b> <sub>1</sub> : FYM compost                | 8.01b                  | 8.17b    | 11.14b                   | 11.31b              | 2.080c                 | 2.164c   | 46.97c                  | 47.50c          |
| I <sub>2</sub> : Plant compost                     | 7.96bc                 | 8.05b    | 10.70c                   | 10.90c              | 2.423b                 | 2.469b   | 49.44b                  | 50.01b          |
| I <sub>3</sub> : ChM compost                       | 7.85c                  | 8.04b    | 9.79d                    | 9.92d               | 2.714a                 | 2.819a   | 51.65a                  | 52.40a          |
| LSD 5%                                             | 0.13                   | 0.14     | 0.20                     | 0.20                | 0.036                  | 0.042    | 0.59                    | 0.42            |
|                                                    |                        |          | Proline tr               | eatments            |                        |          |                         |                 |
| <b>F</b> <sub>0</sub> : Without                    | 7.60b                  | 7.73c    | 11.35a                   | 11.52a              | 2.103c                 | 2.166c   | 47.30c                  | 47.67c          |
| <b>F</b> <sub>1</sub> : Proline (60 mg $L^{-1}$ )  | 8.15a                  | 8.32b    | 10.88b                   | 11.06b              | 2.190b                 | 2.272b   | 47.88b                  | 48.53b          |
| <b>F</b> <sub>2</sub> : Proline (100 mg $L^{-1}$ ) | 8.28a                  | 8.46a    | 10.77b                   | 10.94b              | 2.284a                 | 2.359a   | 48.64a                  | 49.38a          |
| LSD 5%                                             | 0.17                   | 0.10     | 0.17                     | 0.14                | 0.022                  | 0.026    | 0.45                    | 0.60            |
|                                                    |                        |          | Intera                   | ction               |                        |          |                         |                 |
| IvF                                                | LSD 5%                 |          |                          |                     |                        |          |                         |                 |
| IXF                                                | 0.34                   | 0.21     | 0.34                     | 0.27                | 0.044                  | 0.052    | 0.90                    | 1.21            |
| T F <sub>0</sub>                                   | 7.72de                 | 7.90e    | 12.84a                   | 13.03a              | 1.470k                 | 1.526k   | 42.46f                  | 42.84g          |
| $\mathbf{F}_{1}$                                   | 8.34ab                 | 8.51b    | 12.25b                   | 12.41b              | 1.565j                 | 1.625j   | 43.98e                  | 44.48f          |
| $\mathbf{F}_2$                                     | 8.61a                  | 8.82a    | 12.03b                   | 12.21b              | 1.621i                 | 1.683i   | 44.61e                  | 45.25f          |
| T F <sub>0</sub>                                   | 7.60e                  | 7.74ef   | 11.49c                   | 11.65c              | 1.937h                 | 2.016h   | 46.31d                  | 46.72e          |
| $\mathbf{F}_1$                                     | 8.16bc                 | 8.35bcd  | 10.99d                   | 11.14d              | 2.077g                 | 2.160g   | 46.45d                  | 46.97e          |
| $\mathbf{F}_2$                                     | 8.26bc                 | 8.42bc   | 10.95de                  | 11.14d              | 2.225f                 | 2.316f   | 48.15c                  | 48.82d          |
| T F <sub>0</sub>                                   | 7.55e                  | 7.59f    | 10.82de                  | 11.01de             | 2.390e                 | 2.411e   | 48.99bc                 | 49.22cd         |
| $\mathbf{F}_{1}$                                   | 8.15bc                 | 8.26cd   | 10.66de                  | 10.91de             | 2.407e                 | 2.486d   | 49.53b                  | 50.36bc         |
| $\mathbf{F}_2$                                     | 8.17bc                 | 8.30cd   | 10.62e                   | 10.79e              | 2.473d                 | 2.510d   | 49.81b                  | 50.45b          |
| T Fo                                               | 7.52e                  | 7.67f    | 10.24f                   | 10.38f              | 2.614c                 | 2.713c   | 51.42a                  | 51.91a          |
| $\mathbf{F}_{1}$                                   | 7.95cd                 | 8.16d    | 9.63g                    | 9.79g               | 2.712b                 | 2.817b   | 51.54a                  | 52.30a          |
| $\mathbf{F}_2$                                     | 8.09bc                 | 8.29cd   | 9.48g                    | 9.60g               | 2.816a                 | 2.928a   | 52.00a                  | 52.99a          |

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

 Table 4. Effect of various compost sources and proline on growth criteria at a period of 75 days from soybean plant's life during seasons of 2022 and 2023.

|                                 |                          | Plan            | t height     | Foliage fr      | esh weight | Foliage dry weight |          |  |
|---------------------------------|--------------------------|-----------------|--------------|-----------------|------------|--------------------|----------|--|
| Tre                             | eatments                 | (c              | m)           |                 |            |                    |          |  |
|                                 |                          | 1 <sup>st</sup> | $2^{nd}$     | 1 <sup>st</sup> | $2^{nd}$   | 1 <sup>st</sup>    | $2^{nd}$ |  |
|                                 |                          |                 | Compost tre  | atments         |            |                    |          |  |
| I <sub>0</sub> : Without        |                          | 77.22d          | 79.60d       | 52.16d          | 52.78d     | 13.40d             | 13.68d   |  |
| I1: FYM con                     | mpost                    | 83.72c          | 86.31c       | 56.77c          | 57.64c     | 14.47c             | 14.75c   |  |
| I <sub>2</sub> : Plant con      | mpost                    | 87.82b          | 90.72b       | 59.13b          | 60.26b     | 14.93b             | 15.22b   |  |
| I <sub>3</sub> : ChM cor        | npost                    | 93.23a          | 95.93a       | 62.18a          | 62.95a     | 15.60a             | 15.90a   |  |
| LSD 5%                          | -                        | 1.06            | 0.17         | 0.99            | 0.86       | 0.41               | 0.13     |  |
|                                 |                          |                 | Proline trea | tments          |            |                    |          |  |
| <b>F</b> <sub>0</sub> : Without |                          | 84.90b          | 87.55b       | 56.82c          | 57.62c     | 14.43b             | 14.71b   |  |
| F <sub>1</sub> : Proline (      | 60 mg L <sup>-1</sup> )  | 85.10b          | 87.60b       | 57.45b          | 58.32b     | 14.57ab            | 14.85b   |  |
| F <sub>2</sub> : Proline (      | 100 mg L <sup>-1</sup> ) | 86.50a          | 89.27a       | 58.42a          | 59.29a     | 14.80a             | 15.10a   |  |
| LSD 5%                          |                          | 0.93            | 1.19         | 0.36            | 0.68       | 0.36               | 0.21     |  |
|                                 |                          |                 | Interact     | ion             |            |                    |          |  |
|                                 | IvF                      |                 | LSD 5%       |                 |            |                    |          |  |
|                                 | IXF                      | 1.87            | 2.37         | 0.72            | 1.36       | 0.71               | 0.41     |  |
| т                               | $\mathbf{F}_{0}$         | 77.63f          | 79.97ef      | 51.34i          | 51.98i     | 13.27g             | 13.55g   |  |
| <b>1</b> 0                      | $\mathbf{F}_1$           | 75.61g          | 78.01f       | 51.93i          | 52.62hi    | 13.35g             | 13.60g   |  |
|                                 | $\mathbf{F}_2$           | 78.43f          | 80.83e       | 53.21h          | 53.75h     | 13.59fg            | 13.89g   |  |
| т                               | $\mathbf{F}_{0}$         | 82.24e          | 84.91d       | 56.18g          | 57.01g     | 14.23ef            | 14.51f   |  |
| 1                               | $\mathbf{F}_1$           | 83.02e          | 85.56d       | 56.66g          | 57.57g     | 14.48de            | 14.71ef  |  |
|                                 | $\mathbf{F}_2$           | 85.90d          | 88.44c       | 57.48f          | 58.36fg    | 14.70cde           | 15.02de  |  |
| $I_2$                           | $\mathbf{F}_{0}$         | 87.77c          | 90.49bc      | 58.61e          | 59.61ef    | 14.89b-e           | 15.17d   |  |
|                                 | $\mathbf{F_1}$           | 88.08c          | 90.45bc      | 59.02e          | 60.08de    | 14.90b-e           | 15.23cd  |  |
|                                 | $\mathbf{F}_2$           | 34.29cd         | 91.21b       | 59.78d          | 61.09cd    | 14.99bcd           | 15.27cd  |  |
| т                               | $\mathbf{F}_{0}$         | 87.62b          | 94.83a       | 61.14c          | 61.88bc    | 15.32abc           | 15.61bc  |  |
| 13                              | $\mathbf{F_1}$           | 93.68ab         | 96.37a       | 62.19b          | 63.02ab    | 15.56ab            | 15.86ab  |  |
|                                 | $\mathbf{F}_2$           | 94.05a          | 96.59a       | 63.20a          | 63.95a     | 15.94a             | 16.21a   |  |

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

| Treatments $(\%)$ $(mgg)$ $1^{st}$ $2^{nd}$ $1^{st}$ $2^{nd}$ $1^{st}$ $2^{nd}$ Common transmission                             | $1^{st}$ $2^{nd}$<br>0.621d 0.645d                    |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1 <sup>st</sup> 2 <sup>nd</sup> 1 <sup>st</sup> 2 <sup>nd</sup> 1 <sup>st</sup> 2 <sup>nd</sup> 1 <sup>st</sup> 2 <sup>nd</sup> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |  |  |  |  |  |
| Compost tractments                                                                                                              | 0.621d 0.645d                                         |  |  |  |  |  |  |  |  |  |  |
| Compost treatments                                                                                                              |                                                       |  |  |  |  |  |  |  |  |  |  |
| <b>I</b> <sub>0</sub> : Without 3.64d 3.80d 0.356d 0.371d 2.29d 2.41d 0.899d 0.938d 0                                           | 0.650 0.607                                           |  |  |  |  |  |  |  |  |  |  |
| I: FYM compost 3.93c 4.10c 0.393c 0.411c 2.74c 2.78c 1.002c 1.044c 0                                                            | J.659C U.68/C                                         |  |  |  |  |  |  |  |  |  |  |
| <b>I2:</b> Plant compost 4.36b 4.44b 0.411b 0.429b 2.91b 2.97b 1.049b 1.094b 0                                                  | ).689b 0.710b                                         |  |  |  |  |  |  |  |  |  |  |
| L3: ChM compost 4.66a 4.83a 0.431a 0.447a 3.10a 3.26a 1.092a 1.136a 0                                                           | ).719a 0.747a                                         |  |  |  |  |  |  |  |  |  |  |
| LSD 5% 0.07 0.04 0.010 0.10 0.02 0.03 0.022 0.032 0                                                                             | 0.020 0.012                                           |  |  |  |  |  |  |  |  |  |  |
| Proline treatments                                                                                                              |                                                       |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>0</sub> : Without 4.06c 4.20c 0.393b 0.410b 2.69b 2.77c 0.994c 1.037c 0                                           | ).659c 0.684c                                         |  |  |  |  |  |  |  |  |  |  |
| $F_1$ : Proline (60 mg L <sup>-1</sup> ) 4.16b 4.31b 0.396b 0.412b 2.77a 2.86b 1.010b 1.052b 0                                  | ).673b 0.699b                                         |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{F_2}$ : Proline (100 mg L <sup>-1</sup> ) 4.23a 4.38a 0.404a 0.421a 2.83a 2.92a 1.028a 1.070a 0                        | ).683a 0.709a                                         |  |  |  |  |  |  |  |  |  |  |
| LSD 5% 0.05 0.10 0.003 0.003 0.06 0.04 0.010 0.011 0                                                                            | 0.003 0.009                                           |  |  |  |  |  |  |  |  |  |  |
| Interaction                                                                                                                     |                                                       |  |  |  |  |  |  |  |  |  |  |
| LSD 5%                                                                                                                          | LSD 5%                                                |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c} 1 \text{ X F} \\ \hline 0.10 & 0.12 & 0.006 & 0.006 & 0.13 & 0.08 & 0.020 & 0.001 & 0 \end{array}$            | 0.002 0.018                                           |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>0</sub> 3.57h 3.72h 0.355g 0.370g 2.12g 2.23h 0.874j 0.910l 0                                                     | 0.6051 0.626i                                         |  |  |  |  |  |  |  |  |  |  |
| $I_0$ $F_1$ 3.65gh 3.81gh 0.356g 0.371g 2.35f 2.47g 0.893j 0.932k 0                                                             | 0.624k 0.650h                                         |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>2</sub> 3.71g 3.87g 0.359g 0.373g 2.41f 2.53g 0.931i 0.971j 0                                                     | 0.633j 0.659h                                         |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>0</sub> 3.87f 4.03f 0.388f 0.406f 2.71e 2.74f 0.986h 1.028i 0                                                     | 0.650i 0.678g                                         |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{F_1}$ $\mathbf{F_1}$ 3.96ef 4.11ef 0.389f 0.405f 2.73e 2.77ef 1.004gh 1.046h 0                                         | 0.660h 0.688fg                                        |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>2</sub> 3.98e 4.16de 0.403e 0.422e 2.78de 2.82e 1.018fg 1.058g 0                                                  | ).668g 0.696efg                                       |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>0</sub> 4.21d 4.28d 0.406de 0.423de 2.86cd 2.91d 1.038ef 1.087f 0                                                 | 0.680f 0.704def                                       |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{F}_{1}$ $\mathbf{F}_{1}$ 4.39c 4.47c 0.411d 0.429d 2.91c 2.97cd 1.051de 1.095e 0                                       | 0.689e 0.711cde                                       |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{F}_2$ 4.48c 4.56c 0.418c 0.436c 2.96bc 3.02c 1.059cd 1.102d 0                                                          | ).697d 0.715cd                                        |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>0</sub> 4.58b 4.76b 0.426b 0.442b 3.07ab 3.21b 1.078bc 1.124c 0                                                   | ).702c 0.729bc                                        |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{F_1}$ 4.65ab 4.83ab 0.429b 0.445b 3.08ab 3.25ab 1.093ab 1.137b 0                                                       | 0.720b 0.746b                                         |  |  |  |  |  |  |  |  |  |  |
| <b>F</b> <sub>2</sub> 4.74a 4.91a 0.438a 0.455a 3.16a 3.33a 1.104a 1.147a 0                                                     | ).734a 0.767a                                         |  |  |  |  |  |  |  |  |  |  |

 Table 5. Effect of various compost sources and proline on leaf chemical constituents and chlorophyll pigment at a period of 75 days from soybean plant's life during seasons of 2022 and 2023.

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

 Table 6. Effect of various compost sources and proline on soybean yield and its components during seasons of 2022 and 2023.

|                                 |                                  | No of p         | da nlant <sup>-1</sup> | Pods v          | weight                  | Seeds v  | Seeds weight    |           | Seed yield               |  |
|---------------------------------|----------------------------------|-----------------|------------------------|-----------------|-------------------------|----------|-----------------|-----------|--------------------------|--|
| Trea                            | tments                           | No. of po       | bas plant              |                 | (gplant <sup>-1</sup> ) |          |                 |           | ( Kg fed <sup>-1</sup> ) |  |
|                                 |                                  | 1 <sup>st</sup> | 2 <sup>nd</sup>        | 1 <sup>st</sup> | $2^{nd}$                | $1^{st}$ | 2 <sup>nd</sup> | $1^{st}$  | $2^{nd}$                 |  |
|                                 |                                  |                 |                        | Compost         | treatment               | S        |                 |           |                          |  |
| I <sub>0</sub> : Without        | t                                | 58.11d          | 61.22d                 | 45.26d          | 45.88d                  | 23.87c   | 24.34d          | 1302.00d  | 1322.44d                 |  |
| <b>I</b> <sub>1</sub> : FYM c   | ompost                           | 72.00c          | 74.89c                 | 51.53c          | 52.33c                  | 27.55b   | 28.00c          | 1496.67c  | 1519.44c                 |  |
| I <sub>2</sub> : Plant c        | compost                          | 77.78b          | 82.78b                 | 57.02b          | 57.20b                  | 28.59b   | 30.46b          | 1579.78b  | 1617.89b                 |  |
| I <sub>3</sub> : ChM co         | ompost                           | 85.56a          | 90.00a                 | 61.83a          | 62.78a                  | 31.73a   | 32.58a          | 1676.33a  | 1700.78a                 |  |
| LSD 5%                          |                                  | 3.74            | 2.41                   | 0.35            | 0.49                    | 1.50     | 0.28            | 9.16      | 9.32                     |  |
|                                 |                                  |                 |                        | Proline t       | reatments               |          |                 |           |                          |  |
| F <sub>0</sub> : Withou         | ıt                               | 70.58c          | 74.50b                 | 52.61b          | 53.45c                  | 27.62a   | 28.54b          | 1479.17b  | 1504.92c                 |  |
| <b>F</b> <sub>1</sub> : Proline | $(60 \text{ mg } \text{L}^{-1})$ | 73.25b          | 76.50b                 | 53.93ab         | 54.50b                  | 27.93a   | 28.81ab         | 1521.75a  | 1544.25b                 |  |
| F <sub>2</sub> : Proline        | $(100 \text{ mg L}^{-1})$        | 76.25a          | 80.67a                 | 55.19a          | 55.70a                  | 28.25a   | 29.19a          | 1540.17a  | 1571.25a                 |  |
| LSD 5%                          |                                  | 2.29            | 2.53                   | 1.50            | 0.75                    | *NS      | 0.42            | 38.46     | 15.33                    |  |
|                                 |                                  |                 |                        | Inter           | action                  |          |                 |           |                          |  |
| т                               | F                                | LSD 5%          |                        |                 |                         |          |                 |           |                          |  |
| 1                               | ХГ                               | 4.57            | 5.05                   | 3.01            | 1.50                    | 1.90     | 0.84            | 76.93     | 30.65                    |  |
| т                               | $\mathbf{F}_{0}$                 | 54.67f          | 58.00i                 | 43.23g          | 43.89g                  | 23.67f   | 24.22e          | 1269.33f  | 1283.33h                 |  |
| <b>L</b> 0                      | $\mathbf{F}_1$                   | 57.67ef         | 60.00i                 | 45.75fg         | 46.31f                  | 23.76f   | 24.26e          | 1311.33f  | 1328.67g                 |  |
|                                 | $\mathbf{F}_2$                   | 62.00e          | 65.67h                 | 46.79f          | 47.45f                  | 24.18f   | 24.53e          | 1325.33f  | 1355.33g                 |  |
| т                               | $\mathbf{F}_{0}$                 | 70.00d          | 72.00g                 | 50.44e          | 51.27e                  | 27.29e   | 27.77d          | 1466.67e  | 1496.00f                 |  |
| <b>1</b> 1                      | $\mathbf{F}_1$                   | 72.00d          | 74.67fg                | 50.93e          | 51.60e                  | 27.59e   | 27.98d          | 1507.67de | 1523.67ef                |  |
|                                 | $\mathbf{F}_2$                   | 74.00d          | 78.00ef                | 53.23de         | 54.12d                  | 27.76de  | 28.24d          | 1515.67de | 1538.67e                 |  |
| т                               | $\mathbf{F}_{0}$                 | 74.00d          | 81.00de                | 55.80cd         | 56.76c                  | 29.48de  | 30.03c          | 1558.00cd | 1595.33d                 |  |
| 12                              | $\mathbf{F}_1$                   | 79.00c          | 82.33cde               | 57.16c          | 57.22c                  | 30.10cd  | 30.63c          | 1579.33cd | 1611.33d                 |  |
|                                 | $\mathbf{F}_2$                   | 80.33bc         | 85.00bcd               | 58.10bc         | 57.64c                  | 26.19bc  | 30.74c          | 1602.00c  | 1647.00c                 |  |
| т                               | $\mathbf{F}_{0}$                 | 83.67b          | 87.00bc                | 60.96ab         | 61.88b                  | 31.29abc | 32.14b          | 1622.67bc | 1645.00c                 |  |
| 13                              | $\mathbf{F}_1$                   | 84.33ab         | 89.00ab                | 61.89a          | 62.88ab                 | 31.57ab  | 32.35b          | 1688.67ab | 1713.33b                 |  |
|                                 | $\mathbf{F}_2$                   | 88.67a          | 94.00a                 | 62.65a          | 63.58a                  | 32.34a   | 33.24a          | 1717.67a  | 1744.00a                 |  |

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

\*NS= non-significant.

|                           |                          | Pro             | otein        | Carboh          | ydrates    | (         | Dil      |  |  |
|---------------------------|--------------------------|-----------------|--------------|-----------------|------------|-----------|----------|--|--|
| Trea                      | atments                  |                 |              | (%              | .)<br>)    |           |          |  |  |
|                           |                          | 1 <sup>st</sup> | $2^{nd}$     | 1 <sup>st</sup> | $2^{nd}$   | $1^{st}$  | $2^{nd}$ |  |  |
|                           |                          |                 | Compost tre  | eatments        |            |           |          |  |  |
| I <sub>0</sub> : Without  |                          | 27.33d          | 27.80d       | 21.78d          | 22.30d     | 20.67d    | 21.06d   |  |  |
| I1: FYM comp              | oost                     | 29.39c          | 30.04c       | 23.20c          | 23.76c     | 22.65c    | 23.08c   |  |  |
| I2: Plant com             | post                     | 30.70b          | 31.35b       | 24.07b          | 24.70b     | 23.70b    | 24.16b   |  |  |
| I <sub>3</sub> : ChM comp | ost                      | 32.43a          | 33.02a       | 25.07a          | 25.64a     | 24.34a    | 24.89a   |  |  |
| LSD 5%                    |                          | 0.97            | 0.48         | 0.33            | 0.21       | 0.36      | 0.13     |  |  |
|                           |                          |                 | Proline trea | atments         |            |           |          |  |  |
| F <sub>0</sub> : Without  |                          | 29.26b          | 29.80c       | 23.10c          | 23.62b     | 22.55b    | 22.96c   |  |  |
| F1: Proline (60           | mg L <sup>-1</sup> )     | 30.09a          | 30.73b       | 23.59b          | 24.17a     | 22.79b    | 23.24b   |  |  |
| F2: Proline (10           | $0 \text{ mg } L^{-1}$ ) | 30.55a          | 31.13a       | 23.90a          | 24.50a     | 23.18a    | 23.70a   |  |  |
| LSD 5%                    |                          | 0.47            | 0.37         | 0.28            | 0.34       | 0.27      | 0.19     |  |  |
|                           |                          |                 | Interact     | ion             |            |           |          |  |  |
|                           |                          |                 | LSD 5%       |                 |            |           |          |  |  |
| 1                         | ХГ                       | 0.95            | 0.75         | 0.57            | 0.68       | 0.54      | 0.37     |  |  |
| Ŧ                         | $\mathbf{F}_{0}$         | 25.76i          | 26.14i       | 21.24i          | 21.76i     | 20.24h    | 20.60i   |  |  |
| I <sub>0</sub>            | $\mathbf{F}_1$           | 27.95h          | 28.51h       | 21.76hi         | 22.23hi    | 20.57h    | 20.97i   |  |  |
|                           | $\mathbf{F}_2$           | 28.27gh         | 28.73h       | 22.32gh         | 22.90gh    | 21.20g    | 21.62h   |  |  |
| Ŧ                         | $\mathbf{F}_{0}$         | 29.05fg         | 29.66g       | 22.89fg         | 23.34fg    | 22.31f    | 22.66g   |  |  |
| $\mathbf{I}_1$            | $\mathbf{F_1}$           | 29.27f          | 29.96fg      | 23.22ef         | 23.83ef    | 22.52f    | 22.96g   |  |  |
|                           | $\mathbf{F}_2$           | 29.86ef         | 30.50ef      | 23.48de         | 24.11de    | 23.12e    | 23.63f   |  |  |
| Ŧ                         | $\mathbf{F}_{0}$         | 30.42de         | 31.03de      | 23.83cd         | 24.35cde   | 23.51de   | 23.90ef  |  |  |
| $\mathbf{I}_2$            | $\mathbf{F}_1$           | 30.66de         | 31.40d       | 24.10bc         | 24.78bcd   | 23.73cd   | 24.16de  |  |  |
|                           | $\mathbf{F}_2$           | 31.04cd         | 31.62cd      | 24.29bc         | 24.96bc    | 23.86bcd  | 24.43cd  |  |  |
| _                         | $\mathbf{F}_{0}$         | 31.80bc         | 32.36bc      | 24.42b          | 25.04b     | 24.14abc  | 24.66bc  |  |  |
| 13                        | $\mathbf{F}_1$           | 32.46ab         | 33.04ab      | 25.27a          | 25.84a     | 24.34ab   | 24.88ab  |  |  |
|                           | $\mathbf{F}_2$           | 33.04a          | 33.67a       | 25.52a          | 26.03a     | 24.53a    | 25.12a   |  |  |
|                           | • • •                    | 6 11 1 1        | 1.66 4 1 44  | ()              | 4 11 11 00 | 4 4 0.051 |          |  |  |

Table 7. Effect of various compost sources and proline on the quality of soybean seeds during seasons of 2022 and 2023

Means within a row followed by a different letter (s) are statistically different at a 0.05 level

#### Post-harvest soil analysis

Table 8 and Figs 1, 2, 3 illustrate the impact of various compost sources and proline on soil available nutrients *i.e.*, N, P and K (mg kg<sup>-1</sup>) after harvest. It can be noticed that all organic sources positively influenced the availability of N, P, and K, with ChM compost (**I**<sub>3</sub>) demonstrating superior

effects. In other words, the highest values of soil available nutrients *i.e.*, N, P and K (mg kg<sup>-1</sup>) were realized with ChM compost, followed by plant compost then FYM compost, and lately the control treatment, which received no compost source. The influence of proline was nearly negligible in this aspect.



Fig. 1. The individual effect of various compost sources on soil available nitrogen after harvest during seasons of 2022 and 2023

|                                                   |                  | Availa                 | Available- N Availab |          |                 | le - P Availa   |          |  |  |  |  |
|---------------------------------------------------|------------------|------------------------|----------------------|----------|-----------------|-----------------|----------|--|--|--|--|
| Trea                                              | atments          | (mg kg <sup>-1</sup> ) |                      |          |                 |                 |          |  |  |  |  |
|                                                   |                  | $1^{st}$               | $2^{nd}$             | $1^{st}$ | 2 <sup>nd</sup> | 1 <sup>st</sup> | $2^{nd}$ |  |  |  |  |
|                                                   |                  |                        | Compost tro          | eatments |                 |                 |          |  |  |  |  |
| I <sub>0</sub> : Without                          |                  | 42.40d                 | 42.58d               | 10.32d   | 10.75c          | 230.07d         | 232.82c  |  |  |  |  |
| I1: FYM con                                       | npost            | 45.99c                 | 46.23c               | 10.71c   | 10.80c          | 236.92c         | 240.76b  |  |  |  |  |
| I <sub>2</sub> : Plant con                        | npost            | 48.10b                 | 48.17b               | 10.96b   | 11.10b          | 241.90b         | 246.32a  |  |  |  |  |
| I <sub>3</sub> : ChM com                          | npost            | 49.35a                 | 49.54a               | 11.35a   | 11.81a          | 245.96a         | 248.81a  |  |  |  |  |
| LSD 5%                                            |                  | 0.83                   | 1.08                 | 0.10     | 0.08            | 0.30            | 4.30     |  |  |  |  |
|                                                   |                  |                        | Proline trea         | atments  |                 |                 |          |  |  |  |  |
| <b>F</b> <sub>0</sub> : Without                   |                  | 46.86a                 | 46.92a               | 10.94a   | 11.23a          | 240.03a         | 243.25a  |  |  |  |  |
| <b>F</b> <sub>1</sub> : Proline (60 mg $L^{-1}$ ) |                  | 46.51ab                | 46.73ab              | 10.81ab  | 11.09ab         | 238.78a         | 242.32a  |  |  |  |  |
| <b>F<sub>2</sub>:</b> Proline (100 mg $L^{-1}$ )  |                  | 46.02b                 | 46.24b 10.76b 1      |          | 11.02b          | 237.33a         | 240.96a  |  |  |  |  |
| LSD 5%                                            |                  | 0.69                   | 0.52                 | 0.13     | 0.20            | NS              | NS       |  |  |  |  |
|                                                   |                  |                        | Interact             | tion     |                 |                 |          |  |  |  |  |
| T                                                 | F                |                        |                      | LSD 5    | 5%              |                 |          |  |  |  |  |
| 1                                                 | ХГ               | 1.38                   | 1.03                 | 0.26     | 0.40            | 6.42            | 4.63     |  |  |  |  |
|                                                   | $\mathbf{F}_{0}$ | 42.89f                 | 43.05d               | 10.48fg  | 10.92bc         | 233.00d         | 235.29de |  |  |  |  |
| I <sub>0</sub>                                    | $\mathbf{F}_1$   | 42.82fg                | 42.97d               | 10.28gh  | 10.71cd         | 229.90e         | 232.74ef |  |  |  |  |
|                                                   | $\mathbf{F}_2$   | 41.49g                 | 41.71e               | 10.19h   | 10.63d          | 227.31f         | 230.44f  |  |  |  |  |
| _                                                 | $\mathbf{F}_{0}$ | 46.40de                | 46.58c               | 10.76de  | 10.87bc         | 237.48b         | 241.61bc |  |  |  |  |
| $I_1$                                             | $\mathbf{F}_1$   | 45.93e                 | 46.27c               | 10.70def | 10.81bc         | 237.45b         | 241.21c  |  |  |  |  |
|                                                   | $\mathbf{F}_2$   | 45.65e                 | 45.83                | 10.67ef  | 10.72cd         | 235.82c         | 239.45cd |  |  |  |  |
|                                                   | Fa               | 48.58abc               | 48.33cb              | 11.04bc  | 11.19b          | 242.74a         | 246.33a  |  |  |  |  |

11.04bc

10.95cd

10.88cde

11.46a

11.31a

11.19b

11.08bc

11.02bc

11.94a

11.76a

241.81a

241.16a

246.91a

245.97a

246.33a

246.40a

246.23ab

249.78a

248.92a

Table 8. Effect of various compost sources and proline on soil nutrient availability after harvest during seasons of 2022 and 2023

 $\mathbf{F}_1$  $\mathbf{F}_2$ 49.21ab 49.38a 11.28ab 11.72a 245.02a 247.71a Means within a row followed by a different letter (s) are statistically different at a 0.05 level

48.33cb

48.16b

48.02b

49.71a

49.52a

48.58abc

48.02bc

47.71cd

49.56a

49.28ab

\*NS= non-significant

 $I_2$ 

I<sub>3</sub>

 $\mathbf{F}_{0}$ 

 $\mathbf{F}_1$ 

 $\mathbf{F}_2$ 

F<sub>0</sub>

![](_page_7_Figure_5.jpeg)

## Fig. 2. The individual effect of various compost sources on soil available phosphorus after harvest during seasons of 2022 and 2023.

![](_page_8_Figure_1.jpeg)

Fig. 3. The individual effect of various compost sources on soil available potassium after harvest during seasons of 2022 and 2023.

#### 4. Discussion

#### Enzymatic and non-enzymatic antioxidants

Soybean plants cultivated without compost exhibited elevated levels of proline and malondialdehyde (MDA). This suggests that in the absence of organic amendments, the plants experienced heightened stress, leading to an accumulation of proline as an osmo-protectant and an increase in MDA, indicating oxidative damage (**Hnilickova** *et al.* **2021**). The introduction of compost sources, including ChM, plant compost, and FYM compost reduced proline and MDA levels. This implies that the organic amendments played a role in mitigating salinityinduced stress, potentially by enhancing the plant's ability to manage osmotic stress and reducing oxidative damage (**Khatun** *et al.* **2019**).

ChM compost emerged as the most effective in promoting peroxidase enzyme activity (POX) and superoxide dismutase (SOD) levels, indicating a robust antioxidant defense mechanism. This is likely due to bioactive compounds and beneficial microorganisms in ChM compost, enhancing the plant's capacity to scavenge reactive oxygen species (ROS) and alleviate oxidative stress (**Ait-El-Mokhtar** *et al.* 2022).

The gradual increase in enzymatic antioxidant activities with the rise in proline concentration suggests a positive correlation between proline application and the plant's ability to activate enzymatic antioxidant defenses. This aligns with the well-known role of proline as an osmo-protectant and its involvement in cellular protection against oxidative stress (**Ibrahim** *et al.* **2019**). The most effective performance under salinity conditions was observed with the combined application of ChM compost and proline spray at a rate of 100 mg L<sup>-1</sup>. This suggests a synergistic effect between the organic

amendment and proline in enhancing the plant's adaptive mechanisms to salinity stress. ChM compost likely provided a conducive soil environment, while proline further fortified the plant's stress tolerance through osmo-protection and antioxidant activities.

#### Growth criteria and chemical constituents

In salinity stress, the notable performance differences observed in soybean plants subjected to different compost sources and proline rates can be attributed to several scientific factors. ChM compost  $(I_3)$ emerged as the most effective organic source, likely due to its rich nutrient content and beneficial microbial populations, collectively facilitating improved nutrient uptake and utilization by soybean plants under salinity conditions. This enhanced nutrient availability positively influenced growth criteria such as plant height and foliage weights (Ossai 2021; Elbaalawy et al. 2023). Additionally, ChM compost may have contributed to a more soil favorable environment, mitigating the detrimental effects of salinity on plant growth. The positive impact of proline amino acid further enhanced the plants' tolerance to salinity stress, with the proline treatments revealing a dose-dependent response (Abd-Elzaher et al. 2022; Abdeen and Hefni, 2023). The combination of ChM compost and the highest proline treatment  $(\mathbf{F}_2)$  exhibited a synergistic effect, demonstrating the most superior performance by concurrently addressing nutrient availability, osmo-protection, and antioxidant functions crucial for soybean adaptation to saline soils.

## Yield and its components

The observed outcomes regarding soybean yield and its components under salinity stress can be elucidated by various scientific factors influenced by diverse compost sources and proline rates. ChM compost  $(I_3)$ exhibited superiority as an organic source, likely due to its ability to enhance soil fertility and nutrient availability. The beneficial microorganisms present in ChM compost may have contributed to nutrient mobilization and uptake by the soybean plants, counteracting the adverse effects of salinity on yieldrelated parameters. Proline amino acid, known for its osmo-protective and antioxidant properties, played a crucial role in enhancing plant tolerance to salinity stress, as evidenced by the positive correlation between increased proline levels and improved yield components(Abd-Elzaher et al. 2022; Abdeen and Hefni, 2023). The combination of ChM compost and the highest proline treatment  $(\mathbf{F}_2)$  demonstrated a synergistic effect, showcasing comprehensive enhancements in yield-related parameters and soybean produce quality. These findings emphasize the importance of integrated approaches, combining optimal organic fertilization practices with proline applications, to maximize soybean productivity under challenging salinity conditions.

#### Post-harvest soil analysis

The positive influence of organic sources, particularly ChM compost  $(I_3)$ , on soil nutrient availability can be attributed to multiple mechanisms. ChM compost likely had a higher nutrient content, providing an enriched source of nitrogen (N), phosphorus (P), and potassium (K) to the soil. This can be attributed to the composition of chicken manure, which is inherently rich in essential nutrients. Organic composts harbor beneficial microorganisms contributing to nutrient cycling and mineralization (Biratu et al. 2018). These microorganisms in ChM compost might have facilitated the release of N, P, and K from organic matter in the soil, making these nutrients more available to plants. The incorporation of organic composts improves soil structure and water retention. This enhancement of soil physical properties might have contributed to better nutrient availability by creating a more favorable environment for root development (Adekiya et al. 2020).

The nearly negligible influence of proline on soil nutrient availability suggests that its primary role might be in enhancing plant tolerance to salinity stress rather than directly affecting soil nutrient dynamics. Proline's primary functions as an osmoprotectant and antioxidant might not directly influence soil nutrient concentrations.

## 5. Conclusion

Based on the study's findings, it is recommended to prioritize using ChM compost (I<sub>3</sub>) for soybean cultivation in saline soils due to its remarkable efficacy. Further exploration of the long-term effects and sustainability of different organic fertilization sources is encouraged. Proline amino acid applications, especially at higher concentrations ( $\mathbf{F}_2$ ), should be considered to enhance soybean plant tolerance to salinity stress. Integrated approaches that combine optimal organic fertilization practices with proline applications, such as the studied combination of ChM compost and  $F_2$  proline, should be promoted for enhanced soybean production. Ongoing research is essential to refine and expand these recommended practices for a comprehensive and sustainable approach to soybean cultivation in challenging soil conditions.

## **Conflicts of interest**

The authors have declared that no competing interests exist.

**Formatting of funding sources:** The research was funded by the personal efforts of the authors.

#### 5. References

- **Abdeen, S. A. and Hefni, H. (2023).** The potential effect of amino acids as by-products from wastes on faba bean growth and productivity under saline water conditions. Egyptian Journal of Soil Science, 63(1), 47-56.
- Abd-Elzaher, M. A., El-Desoky, M. A., Khalil, F. A., Eissa, M. A., & Amin, A. E. E. A. (2022). Interactive effects of k-humate, proline and Si and Zn nanoparticles in improving salt tolerance of wheat in arid degraded soils. Egyptian Journal of Soil Science, 62(3), 237-251.
- Abou Hussien, E. A., Ahmed, B. M., & Elbaalawy, A. M. (2020). Efficiency of Azolla and biochar application on Rice (*Oryza sativa* L.) productivity in salt-affected soil. Egyptian Journal of Soil Science, 60(3), 277-288.
- Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. In Plant stress tolerance (pp. 317-331). Humana Press.
- Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, C. M., Aremu, C., ... & Akinpelu, O. (2020). Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports, 10(1), 16083.
- Ait-El-Mokhtar, M., Fakhech, A., Ben-Laouane, R., Anli, M., Boutasknit, A., Ait-Rahou, Y& Meddich, A. (2022). Compost as an eco-friendly alternative to mitigate salt-induced effects on growth, nutritional, physiological and biochemical responses of date palm. International journal of recycling organic waste in agriculture, 11(1), 85-100.
- Alici, E. H and Arabaci, G. (2016). Determination of SOD, POD, PPO and cat enzyme activities in *Rumex*

*obtusifolius* L. Annual Research & Review in Biology, 1-7.

- A.O.A.C,(2000)." Official Methods of Analysis". 18<sup>th</sup> Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Biratu, G. K., Elias, E., Ntawuruhunga, P., & Nhamo, N. (2018). Effect of chicken manure application on cassava biomass and root yields in two agro-ecologies of Zambia. Agriculture, 8(4), 45.
- Branisa, J., Jenisová, Z., Porubská, M., Jomová, K., & Valko, M. (2014). Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. The Journal of Microbiology, Biotechnology and Food Sciences, 3, 61.
- Elbaalawy, A. M., Tantawy, M. F., Abd Elhafez, E., & Nada, W. M. (2023). Sulphur compost properties and its amelioration effect on salt affected soil characteristics and productivity. Egyptian Journal of Soil Science, 63(3), 339-354.
- **Elsherpiny, M. A. (2023).** Maximizing faba bean tolerance to soil salinity stress using gypsum, compost and selenium. Egyptian Journal of Soil Science, 63(2), 243-253.
- Elsherpiny, M. A., Baddour, A., & Kany, M. (2023). Effect of organic and bio fertilization and magnesium foliar application on soybean production. Egyptian Journal of Soil Science, 63(1), 127-141.
- Gomez; K. A and Gomez, A.A (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in *Portulaca oleracea* L. Plants, 10(5), 845.

- Ibrahim, A. M., Awad, A. E., Gendy, A. S. H., & Abdelkader, M. A. I. (2019). Effect of proline foliar spray on growth and productivity of sweet basil (*Ocimum basilicum*, L.) plant under salinity stress conditions. Zagazig Journal of Agricultural Research, 46(6), 1877-1889.
- Inckel, M., de Smet, P., Tersmette, T., & Veldkamp, T. (2005). The preparation and use of compost (Vol. 27). Wageningen, the Netherlands: Agromisa.
- Jones Jr, J. B., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. Soil testing and plant analysis, 3, 389-427.
- Khatun, M., Shuvo, M. A. R., Salam, M. T. B., & Rahman, S. H. (2019). Effect of organic amendments on soil salinity and the growth of maize (*Zea mays* L.). Plant Science Today, 6(2), 106-111.
- Mendes, R., Cardoso, C., & Pestana, C. (2009). Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chemistry, 112 (4), 1038-1045.
- Munns, R., Passioura, J. B., Colmer, T. D., & Byrt, C. S. (2020). Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 225(3), 1091-1096.
- **Ossai, C. (2021).** Poultry manure and arbuscular mycorrhiza fungi remediation of sodium chloride-induced substrate salinity for Pepper production. Journal of Current Opinion in Crop Science, 2(3), 363-368.
- Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilizers & organic manures. Fertilizer Development and Consultation Organization.
- Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W. and Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.