

Egyptian Journal of Soil Science

http://ejss.journals.ekb.eg/

CrossMark

Role of compost, biochar and sugar alcohols in raising the maize tolerance to water deficit conditions

Mohamed A. El-Sherpiny, Fatma A. El-Bakry, Noha R. Ibrahim and Hayam A. El-Shaboury

Soil & Water and Environment Research Institute, Agriculture Research Centre, Giza, 12619 Egypt

TOW, people in Egypt are under the water poverty limit a long time ago due to climate change and the shortage of water resources. These conditions hamper agricultural development in Egypt. Thus, a practical solution must be undertaken for confronting the water scarcity that hindered agricultural development in Egypt. So, two field trials were executed to assess three water levels of full irrigation [8000 m^3 ha⁻¹ as traditional full irrigation (TFI) treatment followed in the studied area (100% of TFI), 6000 m^3 ha⁻¹ (75% of TFI) and 4000 m³ ha⁻¹ (50 % of TFI)] as main plots. While different soil conditioners [without (control), biochar (at rate of 24 Mg ha⁻¹) and plant compost (at rate of 24 Mg ha⁻¹) in addition to both of them as combined treatment (at rate of 12 Mg ha⁻¹ for each conditioner),1.0 Mg "mega gram"=10⁶ g i.e., metric ton] were evaluated as subplots. Also, the foliar application of glycerol and sorbitol (0.0 and 500 mM L^{-1}) represented the sub-sub plots. Maize was used as an experimental plant. Findings illustrate that treatments of 75 and 50 % of TFI led to a raise in the enzymatic antioxidants production after 60 days from sowing. While both soil conditioners (either solely or in combination) and the sugar alcohols led to a decline the values of these enzymatic antioxidants. On the contrary, at the period of 90 days from sowing (growth advanced stage), the grown plants without the studied substances (soil conditioners and sugar alcohols) cannot continue producing these enzymatic antioxidants under water deficit treatments. Also, the deficit irrigation (75 and 50 % of TFI) caused a significant decline in the performance and productivity of maize compared to traditional irrigation (100 % of TFI). For example, the highest values of fresh weight (951.64 and 965.61 g plant⁻¹, for 1st and 2nd seasons, respectively), leaf area (620.25 and 628.56 cm² plant⁻¹, for 1st and 2nd seasons, respectively) and chlorophyll content (40.55 and 41.42 SPAD for 1st and 2nd seasons, respectively) were realized under traditional irrigation (100 % of TFI) followed by those values achieved under deficit irrigation treatment (75 % of TFI), while the lowest one was recorded with 50 % of TFI treatment. Regarding the soil conditioners effect, the compost and biochar either solely or in combination improved the plant performance and productivity compared to the corresponding plants grown without soil conditioners. The highest values of growth criteria and productivity were realized with the combined treatment of compost and biochar followed by compost alone then biochar alone and lately control. Concerning sugar alcohols, the sorbitol was the superior, while the glycerol came in the second order and lately control treatment. Generally, it can be concluded that a combination of compost and biochar may hold enough amounts of irrigation water and nutrients and release them as required by the maize plant, thus enhancing plant growth performance with the limited supply of irrigation water. Also, sugar alcohols have a vital role in raising maize tolerance to water deficit conditions.

Keywords: Irrigation techniques, soil conditioners, glycerol, sorbitol and agricultural development.

1. Introduction

Frost, drought, flood, salinity... *etc* are factors resulted due to climate changes, as all of them cause to occur

physiological disorders in higher plants. Drought stress in particular is one of the widespread issues in the agricultural sector in arid and semi-arid regions, where

6

^{*}Corresponding author e-mail:M_Elsherpiny2010@yahoo.com Received: 02/12/2022; Accepted: 27/12/2022 DOI: 10.21608/EJSS.2022.178322.1556 ©2023 National Information and Documentation Center (NIDOC)

it is one of the factors leading to plant physiological disorders. Water security in Egypt is the biggest challenge for the government due to the suffering country from severe water scarcity, especially in recent years. Now, it is known that people in Egypt are under the water poverty limit a long time ago due to climate change and the shortage of water resources. Irrigation water deficit stress is one of the vital issues in the agricultural sector, where it is one of the factors leading to plant physiological disorders via raising the production of reactive Oxygen Species (ROS) in plants tissues. These conditions hamper agricultural development in Egypt (**Rahman 2013**; **Yaseenet al. 2020**; **Yassinet al. 2021**).

The use of water-absorbent substances *e.g.*, compost, biochar, zeolite, natural polymer *etc.* to increase the soil's ability to retain irrigation water may be an effective solution to meet the water requirements of the plant (Nadeem *et al.*, 2017; Védère *et al.* 2023).

There are many studies indicating that compost reduces the use of irrigation water because it retains a large amount of Irrigation water for a long time, and provides the soil with a large group of bacteria that have multiple important functions for the plant. More precisely, compost provides the soil with nutrients and growth regulators as well as helps to increase soil fertility and nutrient availability (Hussein et al., 2022). Where this role restores the vitality of the soil again (Ding et al., 2021). Moreover, compost as an organic fertilizer has influences on improving soil physical attributes e.g., porosity, bulk density, hydraulic conductivity, compression strength, water-holding capacity structure and water permeability (Alvarengaet al., 2015).

Biochar is a carbon-rich solid produced through a pyrolysis process under a high temperature (350 to 700°C) without oxygen to decompose the biomass, which consists of straw, wood, fruit peels, grass and other agricultural residues. This process results in biochar consisting of small and lightweight fragments in addition to some organic liquids and gases (Mosa *et al.*, 2020). Bassouny and Abbas (2019) found that applying biochar to soil was beneficial in saving irrigation water due to its pores that make it able to retain water.

Researchers have indicated that the detrimental effects associated with environmental stress might be overcome by the exogenous application of sugar alcohols (Kaya et al., 2013; Raoufi et al., 2020; AL-Taee, et al., 2022). One of the protective methods to raise the plant tolerance to irrigation water deficit stress may be the utilization of sugar alcohols, which are a new gene rate ion of foliar nutrients for plants (Ma et al., 2022). Sugar alcohols are a carbohydrate which are one of the distinctive products of the photosynthesis process. Sugar alcohols move freely in the higher plant and help to obtain abundant and strong growth and improve the growth performance of the higher plants.

Glycerol, as a sugar alcohol, is a simple triol compound, aodorless, colorless, viscous liquid that is sweet tasting and non-toxic making it an ideal "environmentally friendly" agricultural chemical (**Tisserat and Stuff, 2011**). Glycerol, also called glycerine, is generally obtained from plant and animal sources where it occurs in triglycerides, esters of glycerol with long-chain carboxylic acids (**Zhang** *et al.*, **2015**). Glycerol has several potential usages in agricultural fields (**Betancourt** *et al.*, **2019**).

Sorbitol, a six-carbon sugar alcohol ($C_6H_{14}O_6$), is a sugar alcohol with a sweet taste and one of the most frequently found polyols in higher plants. It is a direct product of photosynthesis in mature plant leaves in parallel with sucrose and both serve similar functions like translocation of carbon skeletons and energy between sources and sink organs (**Li** *et al.* **2020**). Most sorbitol is made from potato starch, but it is also found in nature, for example in apples, pears, peaches, and prunes. It is converted to fructose by sorbitol-6-phosphate 2-dehydrogenase (**Issa** *et al.*, **2020**).

Zea mays L as a summer crop is among the greatest essential cereal crops in Egypt (Yaseenet al., 2020) in terms of cultivated area or nutritional value (Elsherpiny and Helmy, 2022), as it is the thirdlargest cereal crop behind wheat and rice (Ganzouret al., 2020). The maize plant is highly affected by the climate change, and thereby the amount of applied water irrigation is expected to raise by 10-19% in 2040 (Ouda et al., 2016) in all Egypt governorates.

Positive reports about the influences of compost, biochar, glycerol and sorbitol as eco-friendly agrochemicals on maize plant's growth and tolerance to environmental stresses encouraged us to investigate the effects of the combinations of these

Egypt. J. Soil Sci. 63, No. 1 (2023)

substances on Zea *mays* L (one of the most crops sensitive to irrigation water deficit stress, **Zhang** *et al.*, **2019**). To the best of our knowledge, this is the first investigation to evaluate the combined effects of soil addition of biochar and compost as well as exogenous application of glycerol and sorbitol on maize plants grown under irrigation water deficit situations aiming to alleviate the water deficit stress and maintain acceptable yield. Maize was used as an experimental plant, where its performance and productivity are good criteria to judge the efficacy of the studied materials under water deficit conditions.

Two field research trials were implemented at the Tag El-Ezz Experimental Farm, Agricultural Research Station (ARS), Ministry of Agric. and soil Rec. (MASR), Egypt, (31°31' 47.64" N latitude and 30°56' 12.88" E longitude) during two successive seasons of 2021 and 2022.

The Climatic elements in the studied site according to the Meteorological Authority (means) was tabulated in **Table 1**.

2. Material and Methods

- Experimental location

 Table 1. Climatic elements in the studied site according to the Meteorological Authority (means)

Month	Tempera	ture (°C)	P Evapotra (n	'an Inspiration 1m)	Humidity (%)		
-	2021	2022	2021	2022	2021	2022	
May	23.0	23.0	5.1	5.19	68.7	68.6	
June	24.6	24.8	6.1	6.40	70.9	71.0	
July	26.5	26.6	6.45	6.59	75.9	77.1	
Aug	28.7	27.3	6.5	6.30	75.3	77.0	
Sept	26.99	26.4	6.0	6.10	74.9	73.2	

- Soil Sampling

Table 2 shows the characteristics of the initial soil, where the soil sample was analyzed according to the

stander methods adapted from Sparks *et al.*, (2020) and Dane and Topp (2020).

Table 2. Characteristics of initial s	oil (taken at depth	of 0-30 cm) before	e sowing (combined	data over bot
seasons).				

Characteristics		Values				
	Particle	size distribution (%)				
	C. sand	3.400				
Dhysical manantics	F. sand		18.15			
Physical properties	Silt		30.45			
	Clay	Clay				
	Text	ural class is clay				
Hydro physical	WHC, %		35.07			
properties	Saturation, %	70.00				
	EC dSm ⁻¹	3.370				
Chaminal	pH**	8.100				
Chemical	CaCO ₃ %	2.130				
properties	* EC was determined in sa	* EC was determined in saturated soil paste extract.				
	** Soil pH was determined in soil suspension (1: 2.5).					
	Organic matter, %		1.190			
East!!!		Nitrogen	38.52			
Fertifity parameters	Available nutrients, $m_2 V_2^{-1}$	Phosphorus	7.940			
	шgКg	Potassium	201.4			

- Studied substances preparation

<u>**Compost</u>**: Plant residues (rice straw) were obtained then the composting process was implemented 6</u> months before the execution of this field experiment at the experimental site as adapted from **Inckel** *et al.* (2005). Table 3 illustrates the attributes of the compost studied. **Biochar:** The preparation process of biochar was executed using plant residues i.e., rice straw +maize stover under the temperature of 400-500 °C for 30 minutes without oxygen according to **Wang and Wang (2019)**.

<u>Sugar alcohols:</u> Both sorbitol and glycerol were bought from Techno green Company. Then the

studied level was prepared. Both sorbitol and glycerol contain Mn (1.2 and 1.4% for both, respectively), B (2.1 and 2.15 % for both, respectively), CuO (1.4 and 1.3 % for both, respectively), Zn (1.2 and 1.4% for both, respectively), MgO (1.0 and 1.0% for both, respectively) and Na (0.8 and 0.8 for both, respectively). Also, the density for both was 1.5 g ml⁻¹.

 Table 3. The characteristics of the studied water absorbent substances.

Properties	Values
	Compost
P, mg kg ⁻¹	0.72
Zn, mg kg ⁻¹	23.0
Mn, mg kg ⁻¹	25.0
K, mg kg ⁻¹	0.95
C:N ratio	11.5
Total C, %	18.4
Total N, %	1.60
pH	6.24
EC, dS m^{-1}	3.75
	Biochar
EC, dS m^{-1}	4.95
pH	8.65
CEC, cmolc kg ⁻¹	68.0

- Maize seeds.

Maize seeds "Zea mays L. Cv single Hybride 10" were obtained from ARS

- Experimental design and treatments

The current trial was implemented under a split splitplot design with three replicates (Table 4). Three water levels of full irrigation [8000 m³ ha⁻¹ as traditional full irrigation (TFI) treatment followed in the studied area (100% of TFI), 6000 m³ ha⁻¹ (75% of TFI) and 4000 m³ ha⁻¹ (50 % of TFI)] represented the main plots. Irrigation water was given via flood irrigation using a pump and the amount of irrigation water was measured in the light of the discharge rate of the irrigation water from this pump (El-Maghraby et al. 2011). The number of irrigations was six. While different soil conditioners [without (control), biochar (at rate of 24 Mg ha⁻¹) and plant compost (at rate of 24 Mg ha⁻¹) in addition to both of them as combined treatment (at rate of 12 Mg ha⁻¹ for each conditioner)] were allocated in the sub plots. Also, the foliar application of glycerol

and sorbitol as sugar alcohols (0.0 and 500 mM L^{-1}) were devoted in sub-sub plots.

- Experimental setup

The area was 10.5 m^2 for each sub sub-plot. The separator was 3.0 m among the irrigation treatments. Maize seeds were sown on May 28th during both seasons. Before cultivation one month, compost and biochar were mixed with the soil surface layer (0-30 cm depth) at above-mentioned levels.

Also, all plots received calcium superphosphate (6.6%P) at rate 0.50 Mg ha⁻¹. Ammonium sulphate (20.6% N) was added at rate of 0.3 Mg N ha⁻¹, where the used dose was divided into two equal doses; the first one was applied before life watering (the 2nd irrigation), whilst the 2nd dose was applied before the next one (the 3rd irrigation). Potassium sulphate (39.8\% K) was applied at rate of 0.12 Mg ha⁻¹ in one dose before sowing. The source of Irrigation was Nile River, where the irrigation treatments were applied starting after the 2nd irrigation. The exogenous application of sugar

and repeated three times with 15 days intervals.

Treatments				Replicate	s
		Control	R1	R2	
	Control	Clusses	D2	DЭ	D1
	Control	Glycerol	КЭ Р2	K2 D1	NI D2
100 % of IR		Sorbitol	K2	K1	КJ
		Control	R1	R2	R3
	Biochar	Glycerol	R3	R2	R 1
		Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Compost	Glycerol	R3	R2	R 1
		Sorbitol	R2	R1	R3
	Dischart	Control	R1	R2	R3
	compost	Glycerol	R3	R2	R1
	composi	Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Control	Glycerol	R3	R2	R 1
		Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Biochar	Glycerol	R3	R2	R1
75.0/ af ID		Sorbitol	R2	R1	R3
75 % 01 IK		Control	R1	R2	R3
	Compost	Glycerol	R3	R2	R 1
		Sorbitol	R2	R1	R3
	D' 1	Control	R1	R2	R3
	Biochar +	Glycerol	R3	R2	R1
	composi	Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Control	Glycerol	R3	R2	R1
		Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Biochar	Glycerol	R3	R2	R1
50 % of IR		Sorbitol	R2	R1	R3
		Control	R1	R2	R3
	Compost	Glycerol	R3	R2	R1
		Sorbitol	R2	R1	R3
	D: 1	Control	R1	R2	R3
	Biochar + compost	Glycerol	R3	R2	R1
		Sorbitol	R2	R1	R3

Table 4.	The schematic diagram illustrating the distribution of the studied treatments as related
	to the layout of the trial.

The volume of sprayed sugar alcohols solution was $600 \text{ L} \text{ ha}^{-1}$. Other traditional agricultural practices were implemented according to the MASR recommendation. On September 20^{th} , the harvest process was done.

- Measurement traits

- Plant's self-production of enzymatic antioxidants *i.e.*, superoxide dismutase (SOD), peroxidase enzyme (POD) and catalase enzyme (CAT) were estimated using the stander methods described by Alici and Arabaci, (2016) at two periods (after 60 and 90 days from sowing).

- Plant's growth parameters *i.e.*, fresh and dry weights (g plant⁻¹) and leaf area (cm² plant⁻¹) were measured at period of 60 days from sowing, where leaf area was estimated using the leaf disc method (**Watson, 1952**).

- Chlorophyll content in leaves (SPAD value, F.W) was measured using a portable chlorophyll meter (SPAD-502, Soil-Plant Analysis Development (SPAD) Section, Minolta Camera, Osaka, Japan) at period of 60 days from sowing.

- Chemical content in maize tissues (stover + leaves, D.W) *i.e.*, nitrogen (using micro-Kjeldahl apparatus), phosphorus (using spectrophotometer apparatus) and potassium (using flam photometer apparatus) were determined according to **Walinga** *et al.* (2013), where the samples of maize tissues were dried then digested with the mixture of H_2SO_4 and $HClO_4$ (1:1) as the stander method described by **Peterburgski (1968).**

- Yield and its components *i.e.*, No. of seeds cob⁻¹, weight of 1000 seeds (g), cob length (cm), No. of rows cob⁻¹,seed yield and biological yield (Mg ha⁻¹) were measured at harvest stage, while harvest index was calculated as follows;

Harvest index = Economical yield (grain yield) Biological yield (grain + straw yields) × 100

- Bio chemical traits *i.e.*,total carbohydrates and protein as well as oil content (%) in maize seeds at harvest stage were determined according to the stander methods described in **AOAC**, (2000), where crude protein was calculated by multiplying N% in maize seeds by 5.75.

- Soil post-harvest analyses *i.e.*, available nitrogen, phosphorus, potassium and water holding capacity of soil (WHC) were determined as formerly mentioned with the initial soil.

- Statistical Analyses

Data was statistically analyzed using **CoStat version** 6.303 copyright (1998-2004) according to Gomez and Gomez, (1984). Treatment means were compared by using the least significant difference (LSD) at 0.05 level of probability.

2. Results

- Plant's self-production of enzymatic antioxidants

Data of Table 5 shows the effects of compost and biochar as soil conditioners with the external application of sugar alcohols *i.e.*, glycerol and sorbitol on maize plant's self-production of enzymatic antioxidants *i.e.*, superoxide dismutase (SOD), peroxidase enzyme (POD) and catalase enzyme (CAT) at various periods from maize plant's life (60 and 90 days after sowing) during two successive seasons (2021-2022).

At the period of 60 days from sowing, the data detected those plants grown under the irrigation technique which represented the water deficit (50% of TFI) had the highest values of SOD, POD and CAT (unit mg⁻¹ protein⁻¹). The second water deficit treatment (75% of TFI) came in the second order, while the traditional irrigation treatment (100% of TFI) caused the lowest values of these antioxidants in maize tissues.

At the period of 90 days from sowing, Table 3 illustrates, contrary to the period of 60 days, that the maize plants irrigated with 50% of TFI had the minimum values of SOD, POD and CAT (unit mg⁻¹ protein⁻¹) followed by the corresponding plants irrigated with 75% of TFI, while the highest one was realized with the corresponding plants irrigated with 100% of TFI.

On the other hand, the grown maize plants under control treatment (without soil addition of the waterabsorbent substances) produced SOD, POD and CAT (unit mg⁻¹ protein⁻¹) more than that grown with other soil conditioners treatments at the period of 60 days from sowing. Whilst the performance at the period of 90 days from sowing differed, where self-production from SOD, POD and CAT (unit mg⁻¹ protein⁻¹) took a reverse trend. In other words, the maize plants grown on untreated soil with both biochar and compost (control) produced SOD, POD and CAT (unit mg⁻¹ protein⁻¹) less than that grown on soil treated with soil conditioners (either solely or in combination), taking in consideration that combined treatment of compost and biochar was superior in producing these antioxidants followed by compost alone then biochar alone.

Data of the same Table show that the maize plants treated with sugar alcohols produced SOD, POD and CAT (unit mg⁻¹ protein⁻¹) at the period of 60 days from sowing less than the grown maize plants without exogenous application of both sorbitol and glycerol. While at the period of 90 days from sowing,

the highest values of SOD, POD and CAT (unit mg⁻¹ protein⁻¹) were recorded with the maize plants sprayed with sorbitol followed by glycerol and lately control treatment (without sugar alcohols). The same trend was found for both studied seasons.

	Enzy	Enzymatic antioxidants at 60 days				Enzymatic antioxidants at 70 days				Enzymatic antioxidants at 90 days			
Treatments	Super dismuta:	roxide se (SOD)	Peroxidas (PC	e Enzyme DD)	nzyme Catalase enzyme (CAT)		Superoxide dismutase (SOD)		Peroxidas (PC	e Enzyme DD)	Catalas (C	e enzyme AT)	
Treatments						(unit mg ⁻¹	protein ⁻¹)						
	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	
	scuson	scuson	scuson	scuson	Justice	scuson	scuson	scason	scason	scuson	scuson	scuson	
T	71.02-	7150-	102 40-	104 10-		ion techniqu	les	75.02-	221.00-	222.06-	76.92-	78.00-	
1 ₁	/1.03c	/1.560	182.48c	184.10c	68.43C	69.22c	/4.13a	/5.03a	221.09a	223.96a	76.82a	78.09a	
I ₂	/3.36b	/4.256	193.16b	195.56b	72.83b	/3./8b	/1.3/b	72.43b	208.086	211.31b	72.55b	/3.65b	
I ₃	82.98a	83.95a	247.97a	250.83a	87.68a	88.71a	63.04c	64.13c	159.42c	162.21c	60.21c	61.23c	
LSD at 5%	0.15	0.18	0.48	1.98	0.03	0.13	0.08	0.13	1.07	0.20	0.15	0.04	
					Soil	conditioners	5						
S ₁	79.63a	80.30a	228.77a	230.69a	82.64a	83.59a	65.84d	66.92d	176.98d	179.89d	64.33d	65.39d	
S_2	75.77b	76.69b	208.18b	210.87b	76.44b	77.43b	69.50c	70.41c	196.26c	198.85c	69.80c	70.93c	
S ₃	74.46c	75.37c	200.72c	203.21c	74.11c	74.99c	70.73b	71.70b	202.64b	205.67b	71.69b	72.76b	
S4	73.31d	73.97d	193.81d	195.88d	72.06d	72.94d	71.98a	73.09a	208.91a	212.23a	73.63a	74.88a	
LSD at 5%	0.12	0.08	0.37	0.87	0.11	0.09	0.10	0.14	0.86	0.28	0.09	0.09	
					Sug	ar alcohols							
F ₁	76.24a	77.03a	210.53a	212.75a	77.08a	78.04a	69.10c	70.07c	193.77c	196.57c	69.17c	70.28c	
\mathbf{F}_2	75.78b	76.60b	207.69b	210.19b	76.32b	77.32b	69.53b	70.54b	196.10b	199.13b	69.86b	71.01b	
F ₃	75.36c	76.12c	205.39c	207.55c	75.53c	76.36c	69.91a	70.98a	198.71a	201.78a	70.55a	71.67a	
LSD at 5%	0.16	0.17	0.40	1.32	0.1	0.18	0.15	0.17	1.28	0.43	0.15	0.14	
					In	teractions							
IVSTE						LSD	at 5%						
IASXF	0.56	0.57	1.38	4.55	0.59	0.64	0.53	0.58	4.34	1.50	0.52	0.53	

Table 5. Effect of compost, biochar and sugar alcohols on plant's self-production of enzymatic antioxidants at various periods from maize plant's life (60 and 90 days after sowing) during two successive seasons (2021-2022).

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{without soil conditioner (control); } S_2: \text{biochar alone; } S_3: \text{ compost alone; } S_4: \text{biochar + compost; } F_1: \text{without sugar alcohols (control); } F_2: \text{glycerol and } F_3: \text{Sorbitol.}$

- Growth criteria and chemical constituents at period of 60 days from sowing

Data of Table 4 illustrates the individual and interaction effects of the studied treatments on the plant's growth criteria *i.e.*, fresh and dry weights (g plant⁻¹) and leaf area (cm² plant⁻¹), leaves chlorophyll pigment (SPAD) and chemical constituents in maize tissues *i.e.*, N,P and K(%) at period of 60 days from sowing during two successive seasons of 2021 and 2022.

Findings show that deficit irrigation (75 and 50 % of TFI) caused a significant decline in the performance

growth of maize compared to traditional irrigation (100 % of TFI). In other words, the highest values of growth criteria and tissues chemical constituents *e.g.*, fresh weight (951.64 and 965.61 g plant⁻¹, for 1st and 2nd seasons, respectively), leaf area (620.25 and 628.56 cm² plant⁻¹, for 1st and 2nd seasons, respectively) and chlorophyll content (40.55 and 41.42 SPAD for 1st and 2nd seasons, respectively) were realized under traditional irrigation (100 % of TFI) followed by those values achieved under deficit irrigation treatment (75 % of TFI), while the lowest one were recorded with deficit irrigation treatment (50 % of TFI).

Regarding soil conditioners effect, the compost and biochar either solely or in combination significantly improved the plant performance at the period of 60 days from sowing expressed in fresh and dry weights (g plant⁻¹), leaf area (cm² plant⁻¹), leaves chlorophyll pigment (SPAD) and chemical constituents in maize tissues *i.e.*, N, P and K(%) compared to the

corresponding plants grown without soil conditioners. The highest values of all aforementioned growth criteria and tissue chemical content were realized with the combined treatment of compost and biochar followed by compost alone then biochar alone and lately control treatment (without soil conditioner).

 Table 6. Effect of compost, biochar and sugar alcohols on plant's growth criteria, chlorophyll pigment and chemical constituents in maize tissues at period of 60 days from sowing during two successive seasons (2021-2022).

			Growth	criteria			Chlor pigmen	rophyll it, SPAD		Chemical constituents					
Treatments	Fresh weigh	t, g plant ⁻¹	Dry weight, g plant ⁻¹		Leaf area,	Leaf area, cm ² plant ⁻¹				N,%		P,%		К,%	
	1^{st}	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd	
					Irri	gation tech	nniques								
I ₁	951.64a	965.61a	329.92a	334.72a	620.25a	628.56a	40.55a	41.42a	3.31a	3.38a	0.375a	0.382a	3.12a	3.15a	
I ₂	892.78b	903.64b	305.81b	310.50b	594.86b	604.19b	38.64b	39.50b	2.99 b	3.05 b	0.344b	0.351b	2.85b	2.91b	
I ₃	741.56c	752.83c	249.92c	253.72c	528.53c	536.67c	33.06c	33.77c	2.47c	2.53c	0.285c	0.290c	2.39c	2.44c	
LSD at 5%	9.80	0.56	2.61	1.48	1.45	1.02	0.16	0.09	0.01	0.01	0.002	0.002	0.06	0.02	
Soil conditioners															
S ₁	795.15d	803.81d	268.59d	272.41d	550.22d	558.30d	35.08d	35.86d	2.65 d	2.71 d	0.303d	0.309d	2.54d	2.59d	
S_2	858.85c	871.59c	294.37c	299.11c	580.22c	589.04c	37.13c	38.00c	2.91c	2.98c	0.333c	0.341c	2.79c	2.82c	
S ₃	884.33b	897.85b	304.44b	308.78b	591.81b	600.22b	38.24b	39.00b	3.00 b	3.07 b	0.345b	0.351b	2.85b	2.91b	
S_4	909.63a	922.85a	313.44a	318.30a	602.59a	611.67a	39.22a	40.05a	3.12a	3.19a	0.357a	0.363a	2.96a	3.02a	
LSD at 5%	7.60	1.89	1.93	1.71	2.88	1.29	0.17	0.04	0.02	0.02	0.001	0.001	0.04	0.02	
					S	Sugar alco	hols								
F ₁	855.00b	865.14c	291.89c	296.17c	577.36c	585.89c	37.10c	37.92c	2.89c	2.95c	0.331c	0.337c	2.74b	2.79c	
F ₂	861.25b	874.08b	295.17b	299.53b	581.19b	589.86b	37.45b	38.24b	2.92 b	2.99 b	0.334b	0.341b	2.81a	2.85b	
F ₃	869.72a	882.86a	298.58a	303.25a	585.08a	593.67a	37.71a	38.53a	2.96a	3.02a	0.339a	0.346a	2.82a	2.87a	
LSD at 5%	6.50	1.85	1.53	1.88	2.23	1.19	0.15	0.08	0.02	0.02	0.002	0.002	0.04	0.02	
						Interactio	ons								
IVSvF						L	SD at 5	%							
ΙΛΟΧΓ	22.54	6.43	5.27	6.52	7.73	4.11	0.54	0.29	0.06	0.07	0.008	0.008	0.13	0.06	

Means within a row followed by a different letter (s) are statistically different at a 0.05% level.

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{ without soil conditioner (control); } S_2: \text{ biochar alone; } S_3: \text{ compost alone; } S_4: \text{ biochar + compost; } F_1: \text{ without sugar alcohols (control); } F_2: \text{ glycerol and } F_3: \text{ Sorbitol.}$

Concerning sugar alcohols, the exogenous application of sorbitol was the superior treatment, while the glycerol came in the second order and lately control treatment (without sugar alcohols).

Also, it can be noticed that the combined treatment of both biochar and compost (at a rate of 12 Mg ha^{-1} for each conditioner) + foliar application of sorbitol under traditional irrigation technique (100 % of TFI) was the superior treatment for obtaining the best growth performance. Taking into consideration that the

addition of both biochar and compost (either solely or in combination), before sowing with deficit irrigation treatment (75 % of TFI) recorded better results of growth performance and chemical content in maize tissues at the period of 60 days from sowing compared to non-addition of soil conditioners under traditional irrigation technique (100 % of TFI). The same trend was achieved for both seasons.

- Yield and its components at harvest stage.

Tables 5 and 6 point out the individual and interaction effects of compost, biochar and sugar

alcohols on maize yield and its components *i.e.*, No. of seeds cob^{-1} , weight of 1000 seeds (g), cob length (cm), No. of rows cob^{-1} ,seed yield and biological yield (Mg ha⁻¹) as well as some grain biochemical traits *i.e.*, total carbohydrates, protein and oil content (%) at harvest stage during the two successive seasons of 2021 and 2022.

It is clear that all aforementioned traits were significantly affected due to the studied irrigation techniques, where the values significantly decreased as irrigation requirements were reduced. In other words, the highest values of the aforementioned traits were recorded under traditional irrigation (100 % of TFI) followed by those values achieved under deficit irrigation treatment (75 % of TFI), while the lowest ones were recorded with deficit irrigation treatment (50 % of TFI).

Regarding soil addition of biochar and compost treatments, the data of the same Tables illustrate pronouncedly differences between both additional soil conditioners. The combined treatment of compost and biochar came in the first order for obtaining the highest values of all aforementioned traits followed by compost alone then biochar alone, while the control treatment (without soil conditioner) came in the last order. Regarding sugar alcohols, the foliar application of sorbitol came in the first order for obtaining the highest values of all aforementioned traits, while the glycerol came in the second order and lately control treatment (without sugar alcohols).

Also, it can be noticed that the combined treatment of both biochar and compost (at a rate of 12 Mg ha⁻¹ for each conditioner) + foliar application of sorbitol under traditional irrigation technique (100 % of TFI) was the superior treatment for obtaining the highest values of No. of seeds cob⁻¹, weight of 1000 seeds (g), cob length (cm), No. of rows cob⁻¹, seed yield and biological yield (Mg ha⁻¹) as well as some grain bio chemical traits *i.e.*, total carbohydrates, protein and oil content (%). Taking into consideration that the addition of both biochar and compost (either solely or in combination), before sowing with deficit irrigation treatment (75 % of TFI) recorded better results of all aforementioned trats compared to non-addition of soil conditioners under traditional irrigation technique (100 % of TFI).

 Table 7. Effect of compost, biochar and sugar alcohols on maize yield and its components at harvest stage during two successive seasons (2021-2022).

				Yield								
Treatments	No. seeds cob ⁻¹		Weight of 1000 seed, g		Cob ler	Cob length, cm		ows cob ⁻¹	Grain yield, Mg ha ⁻¹		Biological yield, Mg ha ⁻¹	
	1st season	2 nd	1 st	2 nd	1 st	2 nd	1 st	2^{nd}	1 st	2 nd	1 st	2 nd
		season	season	season	season	season	season	season	season	season	season	season
Irrigation techni	ques											
I ₁	389.92a	395.36a	36.00a	36.91a	24.37a	24.74a	15.44a	16.69a	6.83a	6.96a	12.99a	13.23a
I ₂	364.97b	370.14b	35.44b	35.92b	21.58b	21.94b	13.75b	14.69b	6.35b	6.47b	12.31b	12.54b
I ₃	283.75c	288.22c	31.33c	31.73c	14.59c	14.85c	10.28c	10.94c	4.53c	4.63c	10.45c	10.66c
LSD at 5%	1.68	1.64	0.03	0.02	0.08	0.09	0.86	0.50	0.10	0.07	0.14	0.20
Soil conditioner	s											
S ₁	313.33d	318.07d	32.72d	33.24d	16.93d	17.23d	11.41d	12.11d	5.10d	5.21d	11.12d	11.36d
S_2	346.37c	350.67c	34.38c	34.85c	20.23c	20.55c	13.04c	13.93c	5.89c	6.02c	11.87c	12.08c
S_3	356.19b	361.67b	34.76b	35.45b	21.22b	21.57b	13.70b	14.78b	6.19b	6.30b	12.15b	12.36b
S_4	368.96a	374.56a	35.18a	35.87a	22.34a	22.69a	14.48a	15.63a	6.42a	6.54a	12.52a	12.77a
LSD at 5%	1.74	1.96	0.05	0.04	0.11	0.11	0.63	0.56	0.04	0.04	0.08	0.06
Sugar alcohols												
F ₁	341.14c	346.22c	34.08c	34.64c	19.79c	20.10c	12.89a	13.78b	5.79c	5.91c	11.82c	12.05c
\mathbf{F}_2	346.81b	351.86b	34.26b	34.85b	20.19b	20.52b	13.17a	14.14ab	5.91b	6.03b	11.91b	12.15b
F ₃	350.69a	355.64a	34.44a	35.07a	20.57a	20.91a	13.42a	14.42a	6.00a	6.11a	12.01a	12.23a
LSD at 5%	1.35	2.22	0.07	0.07	0.13	0.13	N.S	0.58	0.04	0.04	0.08	0.08
Interactions												
IVSvE						LSD a	t 5%					
IASXE	4.66	7.68	0.26	0.24	0.45	0.46	N.S	N.S	0.14	0.14	0.28	0.27

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{ without soil conditioner (control); } S_2: \text{ biochar alone; } S_3: \text{ compost alone; } S_4: \text{ biochar + compost; } F_1: \text{ without sugar alcohols (control); } F_2: \text{ glycerol and } F_3: \text{ Sorbitol.}$

Treatments	Harvest	index, %	Maize grain quality traits									
Treatments			Carbohy	drates, %	Prote	ein, %	Oil, %					
	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season				
Irrigation tec	hniques											
I ₁	52.47a	52.50a	73.03a	74.19a	15.65a	15.90a	6.24a	6.36a				
I ₂	51.49b	51.55b	71.16b	72.20b	14.55b	14.77b	5.68b	5.80b				
I ₃	43.19c	43.23c	66.17c	67.29c	11.22c	11.40c	3.60c	3.69c				
LSD at 5%	0.28	0.33	0.16	0.12	0.03	0.11	0.07	0.04				
Soil conditio	ners						•					
S ₁	45.46d	45.45d	67.32d	68.43d	12.32d	12.52d	4.30d	4.40d				
S_2	49.14c	49.31c	70.16c	71.28c	13.78c	13.99c	5.18c	5.30c				
S ₃	50.54b	50.64b	71.15b	72.17b	14.26b	14.47b	5.46b	5.57b				
S4	51.06a	50.99a	71.85a	73.04a	14.87a	15.12a	5.75a	5.86a				
LSD at 5%	0.30	0.18	0.17	0.34	0.03	0.06	0.04	0.05				
Sugar alcoho	ls											
F ₁	48.50b	48.54c	69.83c	70.95b	13.64c	13.86c	5.06c	5.17c				
F ₂	49.14a	49.20b	70.15b	71.28a	13.76b	13.98b	5.17b	5.28b				
F ₃	49.51a	49.55a	70.37a	71.46a	14.02a	14.23a	5.29a	5.39a				
LSD at 5%	0.43	0.32	0.13	0.28	0.03	0.04	0.04	0.03				
Interactions												
IXSxF				LSD	at 5%							
	1.50	1.12	0.46	0.97	0.09	0.15	0.12	0.10				

Table 8. Effect of compost, biochar and sugar alcohols on harvest index and maize grain quality traits at harvest stage during two successive seasons (2021-2022).

Means within a row followed by a different letter (s) are statistically different at a 0.05 level.

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{ without soil conditioner (control); } S_2: \text{ biochar alone; } S_3: \text{ compost alone; } S_4: \text{ biochar + compost; } F_1: \text{ without sugar alcohols (control); } F_2: \text{ glycerol and } F_3: \text{ Sorbitol. }$

- Post-harvest soil properties

Data showed in Figs 1, 2, 3 and 5 illustrate the impact of the compost, biochar and sugar alcohols on soil available nutrients *i.e.*, N, P and K (mg kg⁻¹) and soil water holding capacity (WHC,%) (Combined data over both seasons).

Soil N, P and K.

The soil under traditional irrigation technique (100% of TFI) had the lowest values of soil available N, P, K (mg kg⁻¹) (Fig 1, 2 and 3) as a result of improving the growth performance under this irrigation technique compared to water deficit techniques (50 and 75 % of TFI).

In other words, the maize plants irrigated according to the followed traditional method absorbed more nitrogen, phosphorus and potassium from soil, as this behavior made the residues of these nutrients in the studied soil after harvest less. Also, usage both compost and biochar conditioners clearly increased the studied nutrients compared to the corresponding soil without additional water absorbent substances. The content of these nutrients in soil treated with compost as organic fertilizer was more than that

Egypt. J. Soil Sci. **63**, No. 1 (2023)

treated with biochar conditioner and this may attributed to the high content of the first water absorbent substance from nutrients and organic matter. On the hand, the highest content of these nutrients was recorded in soil treated with the combined treatment of compost and biochar.

The same Table indicates that exogenous application of both sugar alcohols led to a decline in the values of these nutrients compared to the corresponding soil containing plants grown without both sugar alcohols. This may be owing to the role of both sugar alcohols in improving maize plant status. This improvement may be as a result of raising maize plants absorption of these nutrients from soil more than untreated maize plants. Taking into consideration that plant uptake from these nutrients with sorbitol was more than glycerol, thus the values of available soil N, P and K was less with sorbitol than glycerol.

Soi lwater holding capacity (WHC, %).

Irrigation techniques and sugar alcohol treatments had an unclear impact on the value of soil WHC (%) of soil, while the most effective factor was compost and biochar. Hence, the presentation of the results will be confined to their influences (Fig4). WHC value of soil increased with all soil conditioners treatments at harvest stage compared to corresponding soil without any conditioner due to the ability of both studied in holding a high quantity of Irrigation water. The combined treatment of compost and biochar caused the highest value of soil WHC followed by biochar alone then compost alone.

Fig. 1. Impact of the compost, biochar and sugar alcohols on soil available nitrogen after harvest during two successive seasons (2021-2022) (combined data over both seasons).

I1: 100% of TFI; I2: 75% of TFI; I3: 50% of TFI; S1: without soil conditioner (control); S2: biochar alone; S3: compost alone; S4: biochar + compost; F1: without sugar alcohols (control); F2: glycerol and F3: Sorbitol.

Fig. 2. Impact of the compost, biochar and sugar alcohols on soil available phosphorus after harvest during two successive seasons (2021-2022) (combined data over both seasons).

 I_1 : 100% of TFI; I_2 : 75% of TFI; I_3 : 50% of TFI; S_1 : without soil conditioner (control); S_2 : biochar alone; S_3 : compost alone; S_4 : biochar + compost; F_1 : without sugar alcohols (control); F_2 : glycerol and F_3 : Sorbitol.

Fig 3. Impact of the compost, biochar and sugar alcohols on soil available potassium after harvest during two successive seasons (2021-2022) (combined data over both seasons).

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{ without soil conditioner (control); } S_2: \text{ biochar alone; } S_3: \text{ compost alone; } S_4: \text{ biochar + compost; } F_1: \text{ without sugar alcohols (control); } F_2: \text{ glycerol and } F_3: \text{ Sorbitol.}$

Fig 4. Impact of the compost, biochar and sugar alcohols on soil water holding capacity (WHC) after harvest during two successive seasons (2021-2022) (combined data over both seasons).

 $I_1: 100\% \text{ of TFI; } I_2: 75\% \text{ of TFI; } I_3: 50\% \text{ of TFI; } S_1: \text{ without soil conditioner (control); } S_2: \text{ biochar alone; } S_3: \text{ compost alone; } S_4: \text{ biochar + compost; } F_1: \text{ without sugar alcohols (control); } F_2: \text{ glycerol and } F_3: \text{ Sorbitol.}$

Biochar was more effective in holding irrigation water than compost due to the ability of biochar to hold irrigation water in its pores, hence it helped in declining the infiltration rate of the soil.

4. Discussion

Water is essential for the germination of maize seeds and growth. Water has various functions in plants include maintaining cell turgidity for structure and growth; comprising much of the living protoplasm in the cells; transporting nutrients and organic

compounds throughout the plant; serving as a raw material for various chemical processes including photosynthesis and through transpiration, buffering the plant against water deficit and wide temperature fluctuations. It is known that reactive Oxygen Species (ROS) in higher plants tissues are produced due to water deficit stress. According to the obtained findings in this study, water deficit stress significantly reduced the growth performance, yield and yield-related characteristics of maize plants. In accordance with our findings, the plant's selfproduction from SOD, POD and CAT (unit mg⁻¹ protein⁻¹) had different trends in each studied period.It can be said that water deficit stress treatments (50 and 75 % of TFI, respectively) caused a raise in the contents of SOD, POD and CAT (unit mg⁻¹ protein⁻¹) in maize leaves at 60 days from sowing compared to the plants grown under traditional irrigation technique (100% of TFI), where a gradual decrease in irrigation requirements caused raising self-production gradually from these enzymatic antioxidants to increase tolerance water deficit stress, or in other words, it can be said that maize plants upregulated various scavenging mechanisms at the first half of the plant's life to suppression the water deficit stress-induced damage and alleviate the hazardous effect of ROS produced due to water deficit stress. Perhaps the ability of protoplasm manifested in this period in resisting the water deficit stress. On the contrary, the plant's selfproduction from SOD, POD and CAT (unit mg⁻¹ protein⁻¹) in its tissues declined with continued water-deficit stress for a long time (at a period of 90 days from sowing). Generally, it can be said that the negative effect of water deficit stress treatments (50 and 75 % of TFI, respectively) may occur physiological disorders in maize plants, which affected the negatively stomata opening, photosynthesis process and stomatal conductance. Thus, this negative effect is reflected in the plant growth performance, yield and its components (Mosa and Ramadan, 2011 and El-Hadidi etal., 2020).

The improvement of plant performance, yield and its components of the plants grown under traditional irrigation technique (100% of TFI) could be due to sufficient both nutrients and irrigation water at the root zone of maize essential for both biological & physiological processes like cell division and elongation (**El-Sherpiny** *et al.*, **2020**).

The superiority of compost to biochar may be due to its ability to retain a large amount of Irrigation water for a long time and provide the soil with a large group of bacteria that have multiple important functions for the plant. More precisely, compost may provide the soil with nutrients and growth regulators as well as help to increase soil fertility and nutrient availability. Where this role may restore the vitality of the soil again. Moreover, compost may have influences on improving soil attributes due to its high content of organic matter and nutrients (**Ding et al., 2021**).

On the other hand, the superiority of biochar to control treatment may be due to its ability to hold a high quantity of Irrigation water in its pores, thus biochar conditioner can retain more irrigation water in the root zone of maize plants to be uptaken as needed, thereby biochar help in tolerating the water deficit stress ((50 and 75 % of TFI, respectively) (**Fischer** *et al.*, **2019 and Mosa** *et al.*, **2020**).

Due to the advantages of both studied soil conditioners, the combination of biochar and compost makes the maize plant more able to tolerate water stress and maintain an acceptable yield (Nadeem *et al.*, 2017).Generally, it can be said that compost and biochar have vital role in preventing soil moisture losses (Kim *et al.*, 2016; Rehman *et al.*, 2016 andCh'ng *et al.*, 2019).

The foliar application of sorbitol and glycerol improved the growth of water deficit-stressed maize plants and this might be due to the effect of sugar alcohols on photosynthesis activity by protecting chlorophylls from the negative influence of drought stress e.g., reactive oxygen species (ROS) (Zhang et al., 2015). The catalytic role that appeared for both sorbitol and glycerol may be attributed that they have the ability to find various ways of being absorbed through the maize leaves through open stomata or pores. Currently, it is known that there are two main conductors within the higher plants for water and nutrients (Moing, 2000), which are wood and phloem and through them, the basic elements of the metabolic channels are connected, but the issue is that the main entrance to the wood is the growing tops of the roots, not the leaves (Jain et al., (2010). As for the bark, the main artery for transporting elements, nothing is allowed to enter it (Raoufi et al., 2020). The plant allows sugar alcohols to pass through the bark easily (Li et al., 2020). All of this positively reflect on maintaining an acceptable yield under water deficit stress.

Finally, it can be noticed that the studied soil conditioners *i.e.*, compost and biochar (either solely or in combination), as well as the exogenous applications of sugar alcohols, led to a decline in the plant's self-production from the enzymatic antioxidants at 60 days from sowing as a result of raising plant resistance to the studied stress due to the investigated substances. Thus the plants don't need more self-production from the enzymatic antioxidants compared to the corresponding plants grown without any studied substances which possessed the highest plant's self-production from the enzymatic antioxidants. On the contrary, at the period of 90 days from sowing (growth advanced stage), the grown plants without the studied substances (soil conditioners and sugar alcohols) cannot continue producing these enzymatic antioxidants under water deficit treatments.

5. Conclusion

Obtained results of the current research work increase our knowledge regarding the efficacy of the combined effects of soil addition of biochar and compost as well as exogenous application of glycerol and sorbitol on maize plants grown under irrigation water deficit situations. Generally, it can be concluded that a combination of compost and biochar may hold enough amounts of Irrigation water and nutrients and release them as required by the maize plant, thus enhancing plant growth performance with the limited supply of Irrigation water. Also, sugar alcohols have a vital role in raising maize tolerance to water deficit conditions where sorbitol is more efficient than glycerol.

Conflicts of interest

Authors have declared that no competing interests exist.

Formatting of funding sources: The research was funded by personal efforts of the authors.

6. References

- Alici, E. H and Arabaci, G. (2016). Determination of SOD, POD, PPO and cat enzyme activities in *Rumex obtusifolius* L. Annual Research & Review in Biology, 1-7.
- AL-Taee, R. W. M., & AL-Shammari, M. F. M. (2022). Effect of Spraying with Organic Fertilizer and Sorbitol Sugar on Growth and Yield of Cabbage. Int. J. of Aquatic Science, 13(1): 362-367.
- Alvarenga, P., Mourinha, C., Farto, M., Santos, T., Palma, P., Sengo, J., ... & Cunha-Queda, C. (2015). Sewage sludge, compost and other representative organic wastes as agricultural soil conditioners:

Benefits versus limiting factors. Waste management, 40, 44-52.

- AOAC,(2000)." Official Methods of Analysis". 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.
- Bassouny, M and Abbas, M. H. (2019). Role of biochar in managing the irrigation water requirements of maize plants: the pyramid model signifying the soil hydro-physical and environmental markers. Egyptian Journal of Soil Science, 59(2): 99-115.
- Betancourt, C., Mello Prado, R. D., Castellanos, L., Olivera Viciedo, D., & Souza Jr, J. P. D. (2019). Effect of raw glycerol on plant soil system in corn and sorghum plants. Revista internacional de contaminación ambiental, 35(4): 991-998.
- Ch'ng, H. Y., Haruna, A. O., Majid, N. M. N. A and Jalloh, M. B. (2019). Improving soil phosphorus availability and yield of *Zea mays* L. using biochar and compost derived from agro-industrial wastes. Italian Journal of Agronomy, 14(1): 34-42.
- CoStat version 6.303 copyright (1998-2004). CoHort Software 798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.
- Dane, J. H. and Topp, C. G. (Eds.) (2020). "Methods of soil analysis", Part 4: Physical methods (Vol. 20). John Wiley & Sons.
- Ding, Z., Ali, E. F., Elmahdy, A. M., Ragab, K. E., Seleiman, M. F., & Kheir, A. M. (2021). Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244, 106626.
- EI-Maghraby, T. A., Abdel-Salam, M. A. A., & Abdel-Warth, M. (2011). Effect of compost on maize (*Zea* mays) yield and some clay soil physical properties under deficit irrigation. *Journal of Soil Sciences and Agricultural Engineering*, 2(5), 611-622.
- El-Hadidi, E.M., Meleha, A.M.I., El-Tobgy, S.M.M and Abo El-Ezz, S.F. (2020). Response of rice (*Oriza Sativa* L.) to some antitranspiratiors under water stress in North Nile Delta, Egypt. Plant Archives, 20(2): 2210-2220.
- El-Sherpiny, M. A., & Helmy, A. (2022). Response of maize plant grown under water deficit stress to compost and melatonin under terraces and alternate furrow irrigation techniques. Egyptian Journal of Soil Science. 62 (4):383-394.
- El-Sherpiny, M. A; Baddour, A. G and El-Kafrawy, M. M. (2020). Effect of zeolite soil addition under different irrigation intervals on maize yield (*Zea mays* L.) and some soil properties. Journal of Soil Sciences and Agricultural Engineering, 11(12): 793-799.
- Fischer, B. M., Manzoni, S., Morillas, L., Garcia, M., Johnson, M. S and Lyon, S. W. (2019). Improving agricultural water use efficiency with biochar–A synthesis of biochar effects on water storage and fluxes across scales. Science of the Total Environment, 657, 853-862.
- Ganzour, S., Ghabour, T., Hemeid, N. M., & Khatab, K. A. (2020). Impact of biofertilizers on maize (*Zea mays L.*) growth and yield under calcareous soil conditions. Egyptian Journal of Soil Science, 60(4): 469-483.

- Gomez; K. A and Gomez, A.A (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Hussein, M., Ali, M., Abbas, M. H., & Bassouny, M. A. (2022). Composting Animal and Plant Residues for Improving the Characteristics of a Clayey Soil and Enhancing the Productivity of Wheat Plant Grown Thereon. *Egyptian Journal of Soil Science*, 62(3), 195-208.
- Inckel, M., de Smet, P., Tersmette, T., & Veldkamp, T. (2005). The preparation and use of compost (Vol. 27). Wageningen, The Netherlands: Agromisa.
- Issa, D. B., Alturki, S. M., Sajyan, T. K., & Sassine, Y. N. (2020). Sorbitol and lithovit-guano25 mitigates the adverse effects of salinity on eggplant grown in pot experiment. Agronomy Research 18(1):113–126.
- Jain, M., Tiwary, S., & Gadre, R. (2010). Sorbitolinduced changes in various growth and biochemici parameters in maize. Plant, Soil and Environment, 56(6): 263-267.
- Kaya, C., Aydemir, S., Sonmez, O., Ashraf, M., & Dikilitas, M. (2013). Regulation of growth and some key physiological processes in salt-stressed maize (Zea mays L.) plants by exogenous application of asparagine and glycerol. Acta Botanica Croatica, 72(1): 157-168.
- Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T and Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (*Zea mays* L.) response. Chemosphere, 142, 153-159.
- Li, P., Geng, C., Li, L., Li, Y., Li, T., Wei, Q., & Yan, D. (2020). Calcium-sorbitol chelating technology and application in potatoes. Am J Biochem Biotechnol, 16, 96-102.
- Ma, T., Hui, Y., Zhang, L., Su, B., & Wang, R. (2022). Foliar application of chelated sugar alcohol calcium fertilizer for regulating the growth and quality of wine grapes. International Journal of Agricultural and Biological Engineering, 15(3): 153-158.
- Moing, A. (2000). Sugar alcohols as carbohydrate reserves in some higher plants. In Developments in crop science (Vol. 26, pp. 337-358). Elsevier.
- Mosa, A. A and Ramadan, A. Y. (2011). Effect of alternate furrow irrigation technique and antioxidants spraying on crop water productivity in the alluvial soil of Nile Delta of Egypt. Journal of Soil Sciences and Agricultural Engineering, 2(4):407-421.
- Mosa, A., El-Ghamry, A and Tolba, M. (2020). Biocharsupported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: Batch sorption-desorption and bioassay investigations. Environmental Technology & Innovation, (19): 100807.
- Nadeem, S. M., Imran, M., Naveed, M., Khan, M. Y., Ahmad, M., Zahir, Z. A., & Crowley, D. E. (2017). Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. Journal of the Science of Food and Agriculture, 97(15): 5139-5145.
- Ouda, S., El-Latif, K. A., & Khalil, F. (2016). Water requirements for major crops. In Major crops and water scarcity in Egypt (pp. 25-32). Springer, Cham.

- Peterburgski, A. V. (1968)."Handbook of Agronomic Chemistry". Kolos Puplishing House, Moscow,(in Russian, pp. 29-86).
- Rahman, M. A. (2013). Water security: Ethiopia–Egypt transboundary challenges over the Nile river basin. Journal of Asian and African Studies, 48(1): 35-46.
- Raoufi, A., Rahemi, M., & Akbari, M. (2020). Glycerol foliar application improves salt tolerance in three pistachio rootstocks. Journal of the Saudi Society of Agricultural Sciences, 19(6): 426-437.
- Rehman, M. Z. U., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A and Ok, Y. S. (2016). Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (*Zea mays* L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218-225.
- Sparks, D. L., Page, A. L., Helmke, P. A and Loeppert, R. H. (Eds.). (2020)."Methods of soil analysis", part 3: Chemical methods (Vol. 14). John Wiley & Sons.
- Tisserat, B., & Stuff, A. (2011). Stimulation of short-term plant growth by glycerol applied as foliar sprays and drenches under greenhouse conditions. HortScience, 46(12): 1650-1654.
- Védère, C., Lebrun, M., Biron, P., Planchais, S., Bordenave-Jacquemin, M., Honvault, N., ... & Rumpel, C. (2023). The older, the better: Ageing improves the efficiency of biochar-compost mixture to alleviate drought stress in plant and soil. Science of the Total Environment, 856, 158920.
- Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W. and Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.
- Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227, 1002-1022.
- Watson, D. J. (1952). The physiological basis of variation in yield. Advances in agronomy, 4, 101-145.
- Yaseen, R., Hegab, R., Kenawey, M., & Eissa, D. (2020). Effect of super absorbent polymer and bio fertilization on maize productivity and soil fertility under drought stress conditions. Egyptian Journal of Soil Science, 60(4): 377-395.
- Yassin, O., M Ismail, S., Ali, M. A. E. M., Khalil, F. A., & Ahmed, E. M. (2021). Optimizing roots and sugar yields and water use efficiency of different sugar beet varieties grown under Upper Egypt conditions using deficit irrigation and harvesting dates. Egyptian Journal of Soil Science, 61(3):367-372.
- Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C and Li, S. (2019). Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. The Crop Journal, 7(3):322-334.
- Zhang, Y., Smith, P., Maximova, S. N., & Guiltinan, M. J. (2015). Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of T *heobroma cacao*. Molecular plant pathology, 16(1): 27-37.